Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis
-
Published:2013-03-08
Issue:5
Volume:13
Page:2793-2825
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Joos F.ORCID, Roth R., Fuglestvedt J. S., Peters G. P.ORCID, Enting I. G., von Bloh W., Brovkin V.ORCID, Burke E. J.ORCID, Eby M., Edwards N. R., Friedrich T.ORCID, Frölicher T. L.ORCID, Halloran P. R.ORCID, Holden P. B.ORCID, Jones C.ORCID, Kleinen T.ORCID, Mackenzie F. T., Matsumoto K.ORCID, Meinshausen M., Plattner G.-K.ORCID, Reisinger A., Segschneider J., Shaffer G., Steinacher M.ORCID, Strassmann K., Tanaka K.ORCID, Timmermann A.ORCID, Weaver A. J.
Abstract
Abstract. The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference156 articles.
1. Aamaas, B., Peters, G. P., and Fuglestvedt, J. S.: A synthesis of climate-based emission metrics with applications, Earth Syst. Dynam. Discuss., 3, 871–934, https://doi.org/10.5194/esdd-3-871-2012, 2012. 2. Annan, J. D. and Hargreaves, J. C.: Efficient identification of ocean thermodynamics in a physical/biogeochemical ocean model with an iterative Importance Sampling method, Ocean Modell., 32, 205–215, https://doi.org/10.1016/j.ocemod.2010.02.003, 2010. 3. Archer, D.: A data-driven model of the global calcite lysocline, Global Biogeochem. Cy., 10, 511–526, https://doi.org/10.1029/96gb01521, 1996. 4. Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A., and Tokos, K.: Atmospheric Lifetime of Fossil Fuel Carbon Dioxide, Annu. Rev. Earth Planet. Sci., 37, 117–134, https://doi.org/10.1146/annurev.earth.031208.100206, 2009. 5. Azar, C. and Johansson, D. J. A.: On the relationship between metrics to compare greenhouse gases – the case of IGTP, GWP and SGTP, Earth Syst. Dynam., 3, 139–147, https://doi.org/10.5194/esd-3-139-2012, 2012.
Cited by
519 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|