Neutron imaging investigation of fossil woods: non-destructive characterization of microstructure and detection of in situ changes as occurring in museum cabinets

Author:

Odin Giliane P.,Rouchon Véronique,Ott Frédéric,Malikova Natalie,Levitz Pierre,Michot Laurent J.

Abstract

Abstract. This paper discusses the applicability of neutron imaging techniques for probing the internal microstructure of several fossil woods upon wetting and drying, two phenomena occurring in museum cabinets and endangering the fossil woods. Investigations were carried out using lignites (fossil woods) from two French localities (Rivecourt, Parisian Basin, Oise – Paleogene; Angeac, Aquitanian Basin, Charente – Cretaceous), which present different macroscopic behavior upon drying. Thanks to the high sensitivity of neutrons to hydrogen content, it was possible to track water diffusion through 3 mm thick samples and to follow in situ changes related to either supply or withdrawal of water without any special preparation and in a relevant time range (from 1 min to a few hours). Classical image analysis allows discriminating between the behavior of the two fossil woods with regard to their interaction with water. Further analysis based on a Fourier transform of projection images provides additional information regarding the existence of large pores in one of the samples. Differences in pore network and internal structures have important mechanical consequences as one of the samples retains its integrity upon drying, whereas the other one shatters into pieces. A better understanding of the underlying processes will clearly require multi-scale analyses, using additional techniques that could probe the materials at a lower scale. Such a combination of multi-scale analyses should provide valuable information for a better conservation of wood remnants, which is crucial for both paleobotanical research and museum exhibits.

Publisher

Pensoft Publishers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3