ICON-ART 2.1: a flexible tracer framework and its application for composition studies in numerical weather forecasting and climate simulations
-
Published:2018-10-05
Issue:10
Volume:11
Page:4043-4068
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Schröter JenniferORCID, Rieger Daniel, Stassen Christian, Vogel Heike, Weimer Michael, Werchner Sven, Förstner JochenORCID, Prill Florian, Reinert DanielORCID, Zängl Günther, Giorgetta MarcoORCID, Ruhnke Roland, Vogel Bernhard, Braesicke Peter
Abstract
Abstract. Atmospheric composition studies on weather and climate timescales require
flexible, scalable models. The ICOsahedral Nonhydrostatic model with Aerosols
and Reactive Trace gases (ICON-ART) provides such an environment. Here, we
introduce the most up-to-date version of the flexible tracer framework for
ICON-ART and explain its application in one numerical weather forecast and
one climate related case study. We demonstrate the implementation of
idealised tracers and chemistry tendencies of different complexity using the
ART infrastructure. Using different ICON physics configurations for weather
and climate with ART, we perform integrations on different timescales,
illustrating the model's performance. First, we present a hindcast
experiment for the 2002 ozone hole split with two different ozone chemistry
schemes using the numerical weather prediction physics configuration. We
compare the hindcast with observations and discuss the confinement of the
vortex split using an idealised tracer diagnostic. Secondly, we study
AMIP-type integrations using a simplified chemistry scheme in conjunction with the
climate physics configuration. We use two different simulations: the
interactive simulation, where modelled ozone is coupled back to the radiation
scheme, and the non-interactive simulation that uses a default background
climatology of ozone. Additionally, we introduce changes of water vapour by
methane oxidation for the interactive simulation. We discuss the impact of
stratospheric ozone and water vapour variations in the interactive and
non-interactive integrations on the water vapour tape recorder, as a measure
of tropical upwelling changes. Additionally we explain the seasonal evolution
and latitudinal distribution of the age of air. The age of air is a measure
of the strength of the meridional overturning circulation with young air in
the tropical upwelling region and older air in polar winter downwelling
regions. We conclude that our flexible tracer framework allows for
tailor-made configurations of ICON-ART in weather and climate applications
that are easy to configure and run well.
Publisher
Copernicus GmbH
Reference72 articles.
1. Aho, A. V., Kernighan, B. W., and Weinberger, P. J.: The AWK programming
language, Addison-Wesley Longman Publishing Co., Inc, 1987. a 2. Arblaster, J. M., Gillett, N. P., Calvo, N., Forster, P. M., Polvani, L.
M., Son, W. S., Waugh, D. W., Young, P. J., Barnes, E. A., Cionni, I.,
Garfinkel, C. I., Gerber, E. P., Hardiman, S. C., Hurst, D. F., Lamarque,
J.-F., Lim, E.-P., Meredith, M. P., Perlwitz, J., Portmann, R. W., Previdi,
M., Sigmond, M., Swart, N. C., Vernier, J.-P., and Wu, Y.: Stratospheric
ozone changes and climate, chapt. 4, in: Scientific Assessment of Ozone
Depletion: 2014, Global Ozone Research and Monitoring Project – Report No.
55, World Meteorological Organization, Geneva, Switzerland, 2014. a 3. Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D.,
Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R.,
Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas,
E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta,
J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos,
N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos,
S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.:
Online coupled regional meteorology chemistry models in Europe: current
status and prospects, Atmos. Chem. Phys., 14, 317–398,
https://doi.org/10.5194/acp-14-317-2014, 2014. a 4. Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray,
E. A.: On the structural changes in the Brewer-Dobson circulation after 2000,
Atmos. Chem. Phys., 11, 3937–3948, https://doi.org/10.5194/acp-11-3937-2011,
2011. a 5. Braesicke, P. and Pyle, J. A.: Changing ozone and changing circulation in
northern mid-latitudes: Possible feedbacks?, Geophys. Res. Lett., 30, 1059,
https://doi.org/10.1029/2002GL015973, 2003. a
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|