Wind turbines in icing conditions: performance and prediction

Author:

Dierer S.,Oechslin R.,Cattin R.

Abstract

Abstract. Icing on structures is an important issue for wind energy developments in many regions of the world. Unfortunately, information about icing conditions is mostly rare due to a lack of measurements. Additionally, there is not much known about the operation of wind turbines in icing conditions. It is the aim of the current study to investigate the effect of icing on power production and to evaluate the potential of icing forecasts to help optimizing wind turbine operation. A test site with two Enercon E-82 turbines was set up in the Jura region in Switzerland in order to study the turbines' behaviour in icing conditions. Icing forecasts were performed by using an accretion model driven by results of the mesoscale weather forecast model WRF. The icing frequency at the test site is determined from pictures of a camera looking at the measurement sensors on the nacelle. The results show that the site is affected by frequent icing: 11.5 days/year of meteorological icing and 41.5 days/year of instrumental icing were observed corresponding to a factor of about four. The comparison of power production with and without blade heating shows that blade heating results in a 3.5% loss and operation without blade heating results in a 10% loss of the annual power production due to icing. Icing forecasts are performed for winter 2009/2010. Simulated and observed icing events agree well and also coincide with periods of power drop. Thus, the results suggest that icing forecasts can help to optimize the operation of wind parks in icing conditions.

Publisher

Copernicus GmbH

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3