Ice nucleation by water-soluble macromolecules
-
Published:2015-04-21
Issue:8
Volume:15
Page:4077-4091
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Pummer B. G., Budke C., Augustin-Bauditz S., Niedermeier D.ORCID, Felgitsch L., Kampf C. J., Huber R. G., Liedl K. R., Loerting T., Moschen T., Schauperl M., Tollinger M., Morris C. E.ORCID, Wex H.ORCID, Grothe H.ORCID, Pöschl U.ORCID, Koop T.ORCID, Fröhlich-Nowoisky J.ORCID
Abstract
Abstract. Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference128 articles.
1. Abbatt, J. P. D., Benz, S., Cziczo, D. J., Kanji, Z., Lohmann, U., and Möhler, O.: Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation, Science, 22, 313, 1770–1773, https://doi.org/10.1126/science.1129726, 2006. 2. Abe, K., Watabe, S., Emori, Y., Watanabe, M., and Arai, S.: An ice nucleation gene of Erwinia ananas, FEBS Lett., 258, 297–300, https://doi.org/10.1016/0014-5793(89)81678-3, 1989. 3. Attard, E., Yang, H., Delort, A.-M., Amato, P., Pöschl, U., Glaux, C., Koop, T., and Morris, C. E.: Effects of atmospheric conditions on ice nucleation activity of Pseudomonas, Atmos. Chem. Phys., 12, 10667–10677, https://doi.org/10.5194/acp-12-10667-2012, 2012. 4. Augustin, S., Wex, H., Niedermeier, D., Pummer, B., Grothe, H., Hartmann, S., Tomsche, L., Clauss, T., Voigtländer, J., Ignatius, K., and Stratmann, F.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989–11003, https://doi.org/10.5194/acp-13-10989-2013, 2013. 5. Aunaas, T.: Nucleating agents in the haemolymph of an intertidal mollusc tolerant to freezing, Cell. Mol. Life Sci., 38, 1456–1457, 1982.
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|