Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog–haze event over the North China Plain

Author:

Gao Y.,Zhang M.ORCID,Liu Z.,Wang L.,Wang P.,Xia X.ORCID,Tao M.,Zhu L.

Abstract

Abstract. The feedback between aerosol and meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) is analyzed by conducting numerical experiments with and without the aerosol direct and indirect effects via a coupled meteorology and aerosol/chemistry model (WRF-Chem). The numerical experiments are performed for the period of 2–26 January 2013, during which a severe fog–haze event (10–15 January 2013) occurred, with the simulated maximum hourly surface PM2.5 concentration of ~600 ug m−3, minimum atmospheric visibility of ~0.3 km, and 10–100 hours of simulated hourly surface PM2.5 concentration above 300 ug m−3 over NCP. A comparison of model results with aerosol feedback against observations indicates that the model can reproduce the spatial and temporal characteristics of temperature, relative humidity (RH), wind, surface PM2.5 concentration, atmospheric visibility, and aerosol optical depth reasonably well. Analysis of model results with and without aerosol feedback shows that during the fog–haze event aerosols lead to a significant negative radiative forcing of −20 to −140 W m−2 at the surface and a large positive radiative forcing of 20–120 W m−2 in the atmosphere and induce significant changes in meteorological variables with maximum changes during 09:00–18:00 local time (LT) over urban Beijing and Tianjin and south Hebei: the temperature decreases by 0.8–2.8 °C at the surface and increases by 0.1–0.5 °C at around 925 hPa, while RH increases by about 4–12% at the surface and decreases by 1–6% at around 925 hPa. As a result, the aerosol-induced equivalent potential temperature profile change shows that the atmosphere is much more stable and thus the surface wind speed decreases by up to 0.3 m s−1 (10%) and the atmosphere boundary layer height decreases by 40–200 m (5–30%) during the daytime of this severe fog–haze event. Owing to this more stable atmosphere during 09:00–18:00, 10–15~January, compared to the surface PM2.5 concentration from the model results without aerosol feedback, the average surface PM2.5 concentration increases by 10–50 μg m−3 (2–30%) over Beijing, Tianjin, and south Hebei and the maximum increase of hourly surface PM2.5 concentration is around 50 (70%), 90 (60%), and 80 μg m−3 (40%) over Beijing, Tianjin, and south Hebei, respectively. Although the aerosol concentration is maximum at nighttime, the mechanism of feedback, by which meteorological variables increase the aerosol concentration most, occurs during the daytime (around 10:00 and 16:00 LT). The results suggest that aerosol induces a more stable atmosphere, which is favorable for the accumulation of air pollutants, and thus contributes to the formation of fog–haze events.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3