The Effect of Meteorological Conditions and Atmospheric Composition in the Occurrence and Development of New Particle Formation (NPF) Events in Europe

Author:

Bousiotis DimitriosORCID,Brean James,Pope FrancisORCID,Dall'Osto Manuel,Querol Xavier,Alastuey AndresORCID,Perez Noemi,Petäjä TuukkaORCID,Massling Andreas,Klenø Nøjgaard Jacob,Nørdstrom Claus,Kouvarakis Giorgos,Vratolis Stergios,Eleftheriadis KonstantinosORCID,Niemi Jarkko V.,Portin Harri,Harrison Roy M.ORCID

Abstract

Abstract. Although new particle formation (NPF) events have been studied extensively for some decades, the mechanisms that drive their occurrence and development are yet to be fully elucidated. Laboratory studies have done much to elucidate the molecular processes involved in nucleation, but this knowledge has yet to be linked to NPF events in the atmosphere, except at very clean air sites. There is great difficulty in successful application of the results from laboratory studies to real atmospheric conditions, due to the diversity of atmospheric conditions and observations found, as NPF events occur almost everywhere in the world without following a clearly defined trend of frequency, seasonality, atmospheric conditions or event development. The present study seeks common features in nucleation events by applying a binned linear regression over an extensive dataset from 16 sites of various types (rural and urban backgrounds as well as roadsides) in Europe. A clear positive relation is found between the solar radiation intensity, temperature and atmospheric pressure with the frequency of NPF events, while relative humidity presents a negative relation with NPF event frequency. Wind speed presents a less consistent relationship which appears to be heavily affected by local conditions. While some meteorological variables appear to have a crucial effect on the occurrence and characteristics of NPF events, especially at rural sites, it appears that their role becomes less marked when at higher values. The analysis of chemical composition data presents interesting results. Concentrations of almost all chemical compounds studied (apart from O3) and the Condensation Sink (CS) have a negative relation with NPF event probability, though areas with higher average concentrations of SO2 had higher NPF event probability. Particulate Organic Carbon (OC), Volatile Organic Compounds (VOCs) and particulate phase sulphate consistently had a positive relation with the growth rate of the newly formed particles. As with some meteorological variables, it appears that at increased concentrations of pollutants or the CS, their influence upon NPF probability is reduced.

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Städte im Klimawandel;Klimawandel in Deutschland;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3