Rainfall patterns after fire differentially affect the recruitment of three Mediterranean shrubs

Author:

Moreno J. M.,Zuazua E.,Pérez B.,Luna B.,Velasco A.,Resco de Dios V.

Abstract

Abstract. In fire-prone environments, the "event-dependent hypothesis" states that plant population changes are driven by the unique set of conditions of a fire (e.g. fire season, climate). Climate variability, in particular changes in rainfall patterns, can be most important for seeder species, since they regenerate after fire from seeds, and for Mediterranean shrublands, given the high yearly variability of rainfall in these ecosystems. Yet, the role of rainfall variability and its interaction with fire characteristics (e.g. fire season) on plant populations has received little attention. Here we investigated the changes in seedling emergence and recruitment of three seeder species (Cistus ladanifer, Erica umbellata and Rosmarinus officinalis) after fires lit during three different years and at two times (early and late) during the fire season. Three plots were burned at each season, for a total of 18 plots burned during the three years. After fire, emerged seedlings were tallied, tagged and monitored during three years (two in the last burning year). Rainfall during the study period was rather variable and, in some years, it was well below average. Postfire seedling emergence varied by a factor of 3 to 12, depending on the species and on the burning year. The bulk of seedling emergence occurred during the first year after fire; seedling recruitment at the end of the study period was tightly correlated with this early emergence. Emergence in Erica and Rosmarinus, but not in Cistus, was correlated with precipitation in the fall and winter immediately after fire, with Erica being the most sensitive to reduced rainfall. Fire season was generally neither an important factor in controlling emergence nor, in particular, recruitment. We discuss how projected changes in rainfall patterns with global warming could alter the balance of species in this shrubland, and could drive some species to near local extinction.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3