On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model

Author:

Charrois Luc,Cosme Emmanuel,Dumont MarieORCID,Lafaysse Matthieu,Morin SamuelORCID,Libois Quentin,Picard GhislainORCID

Abstract

Abstract. This paper examines the ability of optical reflectance data assimilation to improve snow depth and snow water equivalent simulations from a chain of models with the SAFRAN meteorological model driving the detailed multilayer snowpack model Crocus now including a two-stream radiative transfer model for snow, TARTES. The direct use of reflectance data, allowed by TARTES, instead of higher level snow products, mitigates uncertainties due to commonly used retrieval algorithms.Data assimilation is performed with an ensemble-based method, the Sequential Importance Resampling Particle filter, to represent simulation uncertainties. In snowpack modeling, uncertainties of simulations are primarily assigned to meteorological forcings. Here, a method of stochastic perturbation based on an autoregressive model is implemented to explicitly simulate the consequences of these uncertainties on the snowpack estimates.Through twin experiments, the assimilation of synthetic spectral reflectances matching the MODerate resolution Imaging Spectroradiometer (MODIS) spectral bands is examined over five seasons at the Col du Lautaret, located in the French Alps. Overall, the assimilation of MODIS-like data reduces by 45 % the root mean square errors (RMSE) on snow depth and snow water equivalent. At this study site, the lack of MODIS data on cloudy days does not affect the assimilation performance significantly. The combined assimilation of MODIS-like reflectances and a few snow depth measurements throughout the 2010/2011 season further reduces RMSEs by roughly 70 %. This work suggests that the assimilation of optical reflectances has the potential to become an essential component of spatialized snowpack simulation and forecast systems. The assimilation of real MODIS data will be investigated in future works.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3