Geodynamic controls on clastic-dominated base metal deposits

Author:

Glerum Anne C.ORCID,Brune SaschaORCID,Magnall Joseph M.,Weis Philipp,Gleeson Sarah A.ORCID

Abstract

Abstract. To meet the growing global demand for metal resources, new ore deposit discoveries are required. However, finding new high-grade deposits, particularly those not exposed at the Earth's surface, is very challenging. Therefore, understanding the geodynamic controls on the mineralizing processes can help identify new areas for exploration. Here we focus on clastic-dominated Zn–Pb deposits, the largest global resource of zinc and lead, which formed in sedimentary basins of extensional systems. Using numerical modelling of lithospheric extension coupled with surface erosion and sedimentation, we determine the geodynamic conditions required to generate the rare spatiotemporal window where potential metal source rocks, transport pathways, and host sequences are present. We show that the largest potential metal endowment can be expected in narrow asymmetric rifts, where the mineralization window spans about 1–3 Myr in the upper ∼ 4 km of the sedimentary infill close to shore. The narrow asymmetric rift type is characterized by rift migration, a process that successively generates hyper-extended crust through sequential faulting, resulting in one wide and one narrow conjugate margin. Rift migration also leads to (1) a sufficient life span of the migration-side border fault to accommodate a thick submarine package of sediments, including coarse (permeable) continental sediments that can act as source rock; (2) rising asthenosphere beneath the thinned lithosphere and crust, resulting in elevated temperatures in these overlying sediments that are favourable for leaching metals from the source rock; (3) the deposition of organic-rich sediments that form the host rock at shallower burial depths and lower temperatures; and (4) the generation of smaller faults that cut the major basin created by the border fault and provide additional pathways for focused fluid flow from source to host rock. Wide rifts with rift migration can have similarly favourable configurations, but these occur less frequently and less potential source rock is produced, thereby limiting potential metal endowment. In simulations of narrow symmetric rifts, the conditions to form ore deposits are rarely fulfilled. Based on these insights, exploration programmes should prioritize the narrow margins formed in asymmetric rift systems, in particular regions within several tens of kilometres from the paleo-shoreline, where we predict the highest-value deposits to have formed.

Funder

Helmholtz Association

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3