Time-dependent <i>Z-R</i> relationships for estimating rainfall fields from radar measurements

Author:

Alfieri L.,Claps P.,Laio F.

Abstract

Abstract. The operational use of weather radars has become a widespread and useful tool for estimating rainfall fields. The radar-gauge adjustment is a commonly adopted technique which allows one to reduce bias and dispersion between radar rainfall estimates and the corresponding ground measurements provided by rain gauges. This paper investigates a new methodology for estimating radar-based rainfall fields by recalibrating at each time step the reflectivity-rainfall rate (Z-R) relationship on the basis of ground measurements provided by a rain gauge network. The power-law equation for converting reflectivity measurements into rainfall rates is readjusted at each time step, by calibrating its parameters using hourly Z-R pairs collected in the proximity of the considered time step. Calibration windows with duration between 1 and 24 h are used for estimating the parameters of the Z-R relationship. A case study pertaining to 19 rainfall events occurred in the north-western Italy is considered, in an area located within 25 km from the radar site, with available measurements of rainfall rate at the ground and radar reflectivity aloft. Results obtained with the proposed method are compared to those of three other literature methods. Applications are described for a posteriori evaluation of rainfall fields and for real-time estimation. Results suggest that the use of a calibration window of 2–5 h yields the best performances, with improvements that reach the 28% of the standard error obtained by using the most accurate fixed (climatological) Z-R relationship.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference33 articles.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea;Hydrology and Earth System Sciences;2024-01-31

2. Intelligent Reconstruction of Radar Composite Reflectivity Based on Satellite Observations and Deep Learning;Remote Sensing;2024-01-10

3. An Improved Deep Learning-Based Approach to Urban Weather Radar Echo Extrapolation;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

4. Application of Machine Learning Techniques to Improve Multi-Radar Mosaic Precipitation Estimates in Shanghai;Atmosphere;2023-08-29

5. Evaluation and Applicability Analysis of GPM Satellite Precipitation over Mainland China;Remote Sensing;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3