Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagnetic anomalies prior to the L'Aquila earthquake as pre-seismic ones - Part 2

Author:

Eftaxias K.,Balasis G.,Contoyiannis Y.,Papadimitriou C.,Kalimeri M.,Athanasopoulou L.,Nikolopoulos S.,Kopanas J.,Antonopoulos G.,Nomicos C.

Abstract

Abstract. Ultra low frequency-ULF (1 Hz or lower), kHz and MHz electromagnetic (EM) anomalies were recorded prior to the L'Aquila catastrophic earthquake (EQ) that occurred on 6 April 2009. The detected anomalies followed this temporal scheme. (i) The MHz EM anomalies were detected on 26 March 2009 and 2 April 2009. The kHz EM anomalies were emerged on 4 April 2009. The ULF EM anomaly was appeared from 29 March 2009 up to 3 April 2009. The question effortlessly arises as to whether the observed anomalies before the L'Aquila EQ were seismogenic or not. The main goal of this work is to provide some insight into this issue. More precisely, the main aims of this contribution are threefold: How can we recognize an EM observation as pre-seismic one? We aim, through a multidisciplinary analysis to provide some elements of a definition. How can we link an individual EM anomaly with a distinctive stage of the EQ preparation process? The present analysis is consistent with the hypothesis that the kHz EM anomalies were associated with the fracture of asperities that were distributed along the L'Aquila fault sustaining the system, while the MHz EM anomalies could be triggered by fractures in the highly disordered system that surrounded the backbone of asperities of the activated fault. How can we identify precursory symptoms in an individual EM precursor that indicate that the occurrence of the EQ is unavoidable? We clearly state that the detection of a MHz EM precursor does not mean that the occurrence of EQ is unavoidable; the abrupt emergence of kHz EM emissions indicate the fracture of asperities. The observed ULF EM anomaly supports the hypothesis of a relationship between processes produced by increasing tectonic stresses in the Earth's crust and attendant EM interactions between the crust and ionosphere. We emphasize that we attempt to specify not only whether or not a single EM anomaly is pre-seismic in itself, but mainly whether a combination of emergent ULF, MHz and kHz EM anomalies could be characterized as pre-earthquake.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3