Investigation of post-earthquake displacements in viaducts using Geodetic and Finite Element Methods

Author:

Güney D.,Acar M.,Özlüdemir M. T.,Çelik R. N.

Abstract

Abstract. This paper presents the results of research into the post-earthquake displacements of the partially constructed road viaducts in Bolu, Turkey after the Izmit/Kocaeli, (Mw = 7.4), and Düzce (Mw = 7.1) earthquakes on 17 August and 12 November 1999, respectively. The investigations on the viaducts were carried out using both Geodetic and Finite Element Methods (FEM). Firstly, all the geodetic network stations selected for the project were checked because of the recent deformation in the area. Then, new control stations were placed between the piers of the viaducts. 28 object points were placed and measured on each pier to determine their displacements. In the second stage, the behaviours of the viaducts were modelled using the FEM, and the Düzce earthquake acceleration record was analysed to observe the response of the viaducts in a time history domain. The modelled displacement response of the viaducts was compared with the geodetic measurements in order to interpret the sensitivity of the design calculation of the engineering model. The pier displacements that were geodetically measured and calculated using FEM peak pier displacements showed an increase in the piers located closer to the surface rupture from the Izmit/Kocaeli and Düzce earthquakes. The agreement between the observed and modelled displacements decreases with the increase in the distance from the fault line. Since, near the fault trace the horizontal displacement field is discontinuous and large inelastic deformation is expected, the behaviour of the part of the structure located near the fault line cannot be easily reproduced by FEM simulations. This is because the applied model loads derived from the source acceleration spectra cannot be included in the localized finite deformation effects. In order to obtain an improved engineering analysis, it is necessary to utilise more parameters in the numerical analysis.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3