Author:
Foster G. L.,Lunt D. J.,Parrish R. R.
Abstract
Abstract. The Miocene (~24 to ~5 million years ago) was a period of relative global warmth (e.g. Zachos et al. 2001) characterised by the glaciation of Antarctica only. Paradoxically, the majority of available proxy data suggest that during the Miocene pCO2 was similar, or even lower, than the pre-industrial levels (280 ppmv; Pagani et al., 1999; Pearson and Palmer, 2000; Kürschner et al., 1996, 2008) and at times probably crossed the modelled threshold value required for sustained glaciation in the Northern Hemisphere (DeConto et al., 2008). Records of ice rafted debris and the oxygen isotope composition of benthic foraminifera suggest that at several times over the last 25 million years substantial amounts of continental ice did build up in the Northern Hemisphere but none of these led to sustained glaciation. In this contribution we review evidence that suggests that in the Miocene the North American Cordillera was, at least in parts, considerably lower than today. We present new GCM simulations that imply that Late Miocene uplift of the North American Cordillera would have resulted in significant cooling of Northern North American Continent. Offline ice sheet modelling, driven by these GCM outputs, suggests that with a reduced topography inception of the Cordilleran ice sheet is prohibited, and there is a small, but potentially significant, reduction in the amount of ice grown on Baffin Island. This suggests uplift of the North American Cordillera in the Late Miocene may have played an important role in priming the climate for the intensification of Northern Hemisphere glaciation in the Late Pliocene.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献