Evaluating snow weak-layer failure parameters through inverse finite element modelling of shaking-platform experiments

Author:

Podolskiy E. A.ORCID,Chambon G.ORCID,Naaim M.,Gaume J.

Abstract

Abstract. Snowpack weak layers may fail due to excess stresses of various natures, caused by snowfall, skiers, explosions or strong ground motion due to earthquakes, and lead to snow avalanches. This research presents a numerical model describing the failure of "sandwich" snow samples subjected to shaking. The finite element model treats weak layers as interfaces with variable mechanical parameters. This approach is validated by reproducing cyclic loading snow fracture experiments. The model evaluation revealed that the Mohr–Coulomb failure criterion, governed by cohesion and friction angle, was adequate to describe the experiments. The model showed the complex, non-homogeneous stress evolution within the snow samples and especially the importance of tension on fracture initiation at the edges of the weak layer, caused by dynamic stresses due to shaking. Accordingly, a simplified analytical solution, ignoring the inhomogeneity of tangential and normal stresses along the failure plane, may incorrectly estimate the shear strength of the weak layers. The values for "best fit" cohesion and friction angle were ≈1.6 kPa and 22.5–60°. These may constitute valuable first approximations in mechanical models used for avalanche forecasting.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3