Linking local wildfire dynamics to pyroCb development

Author:

McRae R. H. D.,Sharples J. J.,Fromm M.ORCID

Abstract

Abstract. Extreme wildfires are global phenomena that consistently result in loss of life and property and further impact the cultural, economic and political stability of communities. In their most severe form they cause widespread devastation of environmental assets and are capable of impacting the upper troposphere/lower stratosphere through the formation of a thunderstorm within the plume. Such fires are now often observed by a range of remote-sensing technologies, which together allow a greater understanding of a fire's complex dynamics. This paper considers one such fire that burnt in the Blue Mountains region of Australia in late November 2006, which is known to have generated significant pyrocumulonimbus clouds in a series of blow-up events. Observations of this fire are analysed in detail to investigate the localised processes contributing to extreme fire development. In particular, it has been possible to demonstrate for the first time that the most violent instances of pyroconvection were driven by, and not just associated with, atypical local fire dynamics, especially the fire channelling phenomenon, which arises due to an interaction between an active fire, local terrain attributes and critical fire weather and causes the fire to rapidly transition from a frontal to an areal burning pattern. The impacts of local variations in fire weather and of the atmospheric profile are also discussed, and the ability to predict extreme fire development with state-of-the-art tools is explored.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. AFAC: Bushfire Glossary, AFAC Limited, Melbourne, Australia, 36 pp., 2012.

2. American Meteorological Society: Glossary of Meteorology, available at: http://glossary.ametsoc.org/wiki/Pyrocumulonimbus (last access: 24 April 2014), 2013.

3. Arnold, R. K. and Buck, C. C.: Blow-Up fires – Silviculture or Weather Problems? J. Forestry, 52, 408–411, 1954.

4. Byram, G. M.: Atmospheric Conditions Related to Blowup Fires, Southeastern Forest Experimental Station Paper, Asheville, NC, Station Paper 35, 33 pp., 1954.

5. Cook, R., Walker, A., and Wilkes, S.: Airborne fire intelligence, in: Innovations in remote sensing and photogrammetry, edited by: Jones, S. and Reinke, K., Springer, Heidelberg, Germany, 239–254, 2009.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3