Updated estimation of forest biomass carbon pools in China, 1977–2018

Author:

Yang ChenORCID,Shi Yue,Sun Wenjuan,Zhu Jiangling,Ji Chengjun,Feng Yuhao,Ma Suhui,Guo Zhaodi,Fang Jingyun

Abstract

Abstract. China is one of the major forest countries in the world, and the accurate estimation of its forest biomass carbon (C) pool is critical for evaluating the country's C budget and ecosystem services of forests. Although several studies have estimated China's forest biomass using national forest inventory data, most of them were limited to the period of 2004–2008. In this study, we extended our estimation to the most recent period of 2014–2018. Using datasets of eight inventory periods from 1977 to 2018 and the continuous biomass expansion factor method, we estimated that the total biomass C pool and average biomass C density in Chinese forests increased from 4717 Tg C (1 Tg = 1012 g) in the period of 1977–1981 to 7975 Tg C in the period of 2014–2018 and 38.2 Mg C ha−1 to 45.8 Mg C ha−1 (1 Mg = 106 g), respectively, with a net increase of 3258 Tg C and an annual sink of 88.0 Tg C yr−1. Over the most recent 10 years (2009–2018), the average national forest biomass C density and C sink were 44.6 Mg C ha−1 and 154.8 Tg C yr−1, respectively, much larger than those of 39.6 Mg C ha−1 and 63.3 Tg C yr−1 in the period 1977–2008. These pronounced increases were largely attributed to afforestation practices, forest growth, and environmental changes. Our results have documented the importance of ecological restoration practices, provided an essential basis for assessing ecosystem services, and helped to achieve China's C neutrality target.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference71 articles.

1. Cai, W., He, N., Li, M., Xu, L., Wang, L., Zhu, J., Zeng, N., Yan, P., Si, G., Zhang, X., Cen, X., Yu, G., and Sun, O.: Carbon sequestration of Chinese forests from 2010 to 2060: Spatiotemporal dynamics and its regulatory strategies, Sci. Bull., 67, 836–843, 2021.

2. Cao, J., Wang, X., Tian, Y., Wen, Z., and Zha, T.: Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabulaeformis) forest, Ecol. Res., 27, 883–892, 2012.

3. Cao, S.: Why large-scale afforestation efforts in China have failed to solve the desertification problem, Environ. Sci. Technol., 42, 1826–1831, 2008.

4. Cao, S., Chen, L., Shankman, D., Wang, C., Wang, X., and Zhang, H.: Excessive reliance on afforestation in China's arid and semi-arid regions: Lessons in ecological restoration, Earth-Sci. Rev., 104, 240–245, 2011.

5. Eyring, V., Lamarque, J., Hess, P., Arfeuille, F., Bowman, K., Chipperfiel, M., Duncan, B., Fiore, A., Gettelman, A., Giorgetta, M., Granier, C., Hegglin, M., Kinnison, D., Kunze, M., Langematz, U., Luo, B., Martin, R., Matthes, K., Newman, P., Peter, T., Robock, A., Ryerson, T., Saiz-Lopez, A., Salawitch, R., Schultz, M., Shepherd, T., Shindell, D., Staehelin, J., Tegtmeier, S., Thomason, L., Tilmes, S., Vernier, J., Waugh, D., and Young, P.: Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments, Sparc Newsletter, 40, 48–66, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3