Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008
-
Published:2017-08-15
Issue:15
Volume:17
Page:9697-9716
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Qi Ling, Li Qinbin, Henze Daven K., Tseng Hsien-Liang, He CenlinORCID
Abstract
Abstract. We quantify source contributions to springtime (April 2008) surface black carbon (BC) in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit) using a global chemical transport model (GEOS-Chem) and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40–43 %) before 18 April and by Siberian open biomass burning emissions (29–41 %) afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24–68 %, with an average of 45 %). We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (20–25 April) to global emissions from 1 March to 25 April. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 % of total anthropogenic contributions), and natural gas flaring emissions in the western extreme north of Russia (WENR) are the largest anthropogenic sources of BC at Zeppelin (26 %) and Alert (13 %). We find that long-range transport of emissions from Beijing–Tianjin–Hebei (also known as Jing–Jin–Ji), the biggest urbanized region in northern China, contribute significantly (∼ 10 %) to surface BC across the Arctic. On average, it takes ∼ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach the Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic transport events dominate BC at Denali (87 %), a site outside the Arctic front, which is a strong transport barrier. The relative contribution of these events to surface BC within the polar dome is much smaller (∼ 50 % at Barrow and Zeppelin and ∼ 10 % at Alert). The large contributions from Asian anthropogenic sources are predominately in the form of chronic pollution (∼ 40 % at Barrow, 65 % at Alert, and 57 % at Zeppelin) on about a 1-month timescale. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference83 articles.
1. AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA), Climate Change and the Cryosphere, Arctic Monitoring and As- sessment Programme (AMAP), Oslo, Narayana Press, Gylling, Denmark, ISBN-13: 978-82-7971-073-8, 538 pp., 2011. 2. Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000, Global Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006gb002840, 2007. 3. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013. 4. Bourgeois, Q. and Bey, I.: Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions, J. Geophys. Res.-Atmos., 116, 5380–5552, https://doi.org/10.1029/2010jd015096, 2011. 5. Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A., Brioude, J., Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W., Ferrare, R. A., Gao, R.-S., Gore, W., Holloway, J. S., Hübler, G., Jefferson, A., Lack, D. A., Lance, S., Moore, R. H., Murphy, D. M., Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A., Peischl, J., Pierce, R. B., Pilewskie, P., Quinn, P. K., Ryerson, T. B., Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H., Thomson, D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., and Wollny, A. G.: Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11, 2423–2453, https://doi.org/10.5194/acp-11-2423-2011, 2011.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|