Author:
Negi H. S.,Kokhanovsky A.,Perovich D. K.
Abstract
Abstract. An asymptotic analytical radiative transfer (AART) theory was used to retrieve snow optical parameters such as extinction coefficient, diffuse exponent, asymptotic flux extinction coefficient (AFEC), snow optical thickness and probability of photon absorption (PPA). This theory was applied to the reflection and transmission data for a temperate snow cover from 400–1000 nm wavelength region, to retrieve AFEC for different types of snow cover (thick, thin, dry, wet, new and old snow). The AFEC values were found at 450 nm wavelength region in the range from 0.06 to 0.22 cm−1, where high values were observed for increased wetness and impurity in snow. A good agreement between AART retrieved and other radiative transfer model retrieved parameter shows that AART theory can work well for different types of snow. The extinction coefficients for temperate snow ranged from 0.5 to 1.0 mm−1 and the e-folding depths ranged from 5 to 25 cm. The snow physical characteristics such as grain size and density were also retrieved using derived optical parameters and found in agreement with ground measurements. The main advantages of the proposed AART method are the simple analytical equations that provide a valuable alternative from complex numerical radiative transfer solutions.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献