Application of asymptotic radiative transfer theory for the retrievals of snow parameters using reflection and transmission observations

Author:

Negi H. S.,Kokhanovsky A.,Perovich D. K.

Abstract

Abstract. An asymptotic analytical radiative transfer (AART) theory was used to retrieve snow optical parameters such as extinction coefficient, diffuse exponent, asymptotic flux extinction coefficient (AFEC), snow optical thickness and probability of photon absorption (PPA). This theory was applied to the reflection and transmission data for a temperate snow cover from 400–1000 nm wavelength region, to retrieve AFEC for different types of snow cover (thick, thin, dry, wet, new and old snow). The AFEC values were found at 450 nm wavelength region in the range from 0.06 to 0.22 cm−1, where high values were observed for increased wetness and impurity in snow. A good agreement between AART retrieved and other radiative transfer model retrieved parameter shows that AART theory can work well for different types of snow. The extinction coefficients for temperate snow ranged from 0.5 to 1.0 mm−1 and the e-folding depths ranged from 5 to 25 cm. The snow physical characteristics such as grain size and density were also retrieved using derived optical parameters and found in agreement with ground measurements. The main advantages of the proposed AART method are the simple analytical equations that provide a valuable alternative from complex numerical radiative transfer solutions.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3