Pandemic Minecrafting: an analysis of the perceptions of and lessons learned from a gamified virtual geology field camp

Author:

Rader ErikaORCID,Love Renee,Reano Darryl,Dousay Tonia A.ORCID,Wingerter Natasha

Abstract

Abstract. To mimic the 3D geospatial components of geologic mapping usually spotlighted by field camp, we developed a virtual course based in the sandbox video game Minecraft. Paired with audio/video conferencing and real data, students practiced measuring strike and dip, orienteering with a compass, matching landscape features with topographic maps, and tracing geologic contacts within the team structure typically employed in field camp. Open-source programs and tutorials freely available online assisted with constructing the Minecraft worlds. Assignments were aligned to the nine learning outcomes established for geology field camps by the National Association of Geology Teachers (NAGT). A pre-survey and post-survey quantified students' learning of the subject matter as well as perceptions towards Minecraft and online learning. We also held feedback sessions and conducted in-class, live observations to classify students' reactions and experiences during virtual activities. Overwhelmingly, students indicated they would have preferred an in-person field camp, yet they considered the Minecraft assignments exciting, important, interesting, and valuable. Regardless of perceived barriers, scores on subject matter questions increased from the pre- to the post-survey. Finally, observations illustrated how students' experiences in a virtual field camp recreated comparable components that students experience during an in-person field camp (e.g., students discussing career pathways, geological skills, and fostering interpersonal relationships). Because this virtual course achieved the curricular goals as well as the non-curricular goals and was relatively easy to construct, we recommend the usage of Minecraft for virtual geology courses in the future.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3