Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments
-
Published:2013-08-20
Issue:8
Volume:10
Page:5571-5588
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Hardison A. K.,Canuel E. A.,Anderson I. C.,Tobias C. R.,Veuger B.,Waters M. N.
Abstract
Abstract. Microphytobenthos and benthic macroalgae play an important role in system metabolism within shallow coastal bays. However, their independent and interactive influences on sediment organic matter (SOM) are not well understood. We investigated the influence of macroalgae and microphytobenthos on SOM quantity and quality in an experimental mesocosm system using bulk and molecular level (total hydrolyzable amino acids, THAA; phospholipid linked fatty acids, PLFA; pigment) analyses. Our experiment used an incomplete factorial design made up of two factors, each with two levels: (1) light (ambient vs. dark) and (2) macroalgae (presence vs. absence of live macroalgae). Over the course of the 42-day experiment, total organic carbon (TOC) and total nitrogen (TN) increased under ambient light by 173 ± 14 and 141 ± 7%, respectively, compared to in the dark (78 ± 29 and 39 ± 22%). THAA comprised a substantial fraction of SOM (~ 16% of TOC, 35% of TN) and followed TOC and TN accumulation patterns. Mole percent composition of the THAA pool indicated that SOM was composed of more labile organic material (e.g., L-glutamic acid, phenylalanine) under ambient light conditions while SOM in dark treatments was more degraded, with higher proportions of glycine and D-alanine. PLFA content, which represents viable biomass, made up ~ 1% of TOC and contained high levels of algal fatty acids in the light, particularly PLFA derived from diatoms. In the presence of microphytobenthos (i.e., light and macroalgae treatments), SOM lability increased, resulting in the observed increases in bacterial PLFA concentrations. Macroalgae, which were added to half of the light treatments, decreased SOM accumulation compared to light treatments without macroalgae, with TOC and TN increasing by only 130 ± 32 and 94 ± 24%, respectively. This decrease likely resulted from shading by macroalgae, which reduced production of microphytobenthos. The presence of macroalgae decreased SOM lability as well, which resulted in diminished buildup of bacterial biomass. By the final day of the experiment, principal component analysis revealed that sediment composition in treatments with macroalgae was more similar to dark treatments and less similar to light treatments without macroalgae. Overall, microphytobenthos and benthic macroalgae fundamentally altered SOM quality and quantity, which may have notable ecological consequences for shallow-water systems such as increased hypoxia/anoxia, sulfide accumulation, enhanced mineralization and/or stimulated denitrification.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference94 articles.
1. An, S. and Joye, S. B.: Enhancement of coupled nitrification-denitrification by benthic photosynthesis in shallow estuarine sediments, Limnol. Oceanogr., 46, 62–74, 2001. 2. Anderson, I. C., McGlathery, K. J., and Tyler, A. C.: Microbial mediation of "reactive" nitrogen transformations in a temperate lagoon, Mar. Ecol.-Prog. Ser., 246, 73–84, 2003. 3. Banta, G. T., Pedersen, M. F., and Nielsen, S. L.: Decomposition of marine primary producers: Consequences for nutrient recycling and retention in coastal ecosystems, in: Estuarine Nutrient Cycling: The Influence of Primary Producers, edited by: Nielsen, S. L., Banta, G. T., and Pedersen, M. F., Kluwer Academic Publishers, Netherlands, 187–216, 2004. 4. Barranguet, C., Herman, P. M. J., and Sinke, J. J.: Microphytobenthos biomass and community somposition studied by pigment biomarkers: importance and fate in the carbon cycle of a tidal flat, J. Sea Res., 38, 59–70, 1997. 5. Benoy, G. A. and Kalff, J.: Sediment accumulation and Pb burdens in submerged macrophyte beds, Limnol. Oceanogr., 44, 1081–1090, 1999.
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|