Zero to moderate methane emissions in a densely rooted, pristine Patagonian bog – biogeochemical controls as revealed from isotopic evidence

Author:

Münchberger Wiebke,Knorr Klaus-HolgerORCID,Blodau Christian,Pancotto Verónica A.,Kleinebecker Till

Abstract

Abstract. Peatlands are significant global methane (CH4) sources, but processes governing CH4 dynamics have been predominantly studied in the Northern Hemisphere. Southern hemispheric and tropical bogs can be dominated by cushion-forming vascular plants (e.g. Astelia pumila, Donatia fascicularis). These cushion bogs are found in many (mostly southern) parts of the world but could also serve as extreme examples for densely rooted northern hemispheric bogs dominated by rushes and sedges. We report highly variable summer CH4 emissions from different microforms in a Patagonian cushion bog as determined by chamber measurements. Driving biogeochemical processes were identified from pore water profiles and carbon isotopic signatures. Intensive root activity throughout a rhizosphere stretching over 2 m in depth accompanied by molecular oxygen release created aerobic microsites in water-saturated peat, leading to a thorough CH4 oxidation (< 0.003 mmol L−1 pore water CH4, enriched in δ13C-CH4 by up to 10 ‰) and negligible emissions (0.09±0.16 mmol CH4 m−2 d−1) from Astelia lawns. In sparsely or even non-rooted peat below adjacent pools pore water profile patterns similar to those obtained under Astelia lawns, which emitted very small amounts of CH4 (0.23±0.25 mmol m−2 d−1), were found. Below the A. pumila rhizosphere pore water concentrations increased sharply to 0.40±0.25 mmol CH4 L−1 and CH4 was predominantly produced by hydrogenotrophic methanogenesis. A few Sphagnum lawns and – surprisingly – one lawn dominated by cushion-forming D. fascicularis were found to be local CH4 emission hotspots with up to 1.52±1.10 mmol CH4 m−2 d−1 presumably as root density and molecular oxygen release dropped below a certain threshold. The spatial distribution of root characteristics supposedly causing such a pronounced CH4 emission pattern was evaluated on a conceptual level aiming to exemplify scenarios in densely rooted bogs. We conclude that presence of cushion vegetation as a proxy for negligible CH4 emissions from cushion bogs needs to be interpreted with caution. Nevertheless, overall ecosystem CH4 emissions at our study site were probably minute compared to bog ecosystems worldwide and widely decoupled from environmental controls due to intensive root activity of A. pumila, for example.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3