Decay times of transitionally dense specularly reflecting meteor trails and potential chemical impact on trail lifetimes

Author:

Hocking Wayne K.ORCID,Silber Reynold E.,Plane John M. C.ORCID,Feng WuhuORCID,Garbanzo-Salas Marcial

Abstract

Abstract. Studies of transitionally dense meteor trails using radars which employ specularly reflecting interferometric techniques are used to show that measurable high-temperature chemistry exists at timescales of a few tenths of a second after the formation of these trails. This is a process which is distinct from the ambient-temperature chemistry that is already known to exist at timescales of tens of seconds and longer in long-lived trails. As a consequence, these transitionally dense trails have smaller lifetimes than might be expected if diffusion were the only mechanism for reducing the mean trail electron density. The process has been studied with four SKiYMET radars at latitudes varying from 10 to 75° N, over a period of more than 10 years, 24 h per day. In this paper we present the best parameters to use to represent this behaviour and demonstrate the characteristics of the temporal and latitudinal variability in these parameters. The seasonal, day–night and latitudinal variations correlate reasonably closely with the corresponding variations of ozone in the upper mesosphere. Possible reasons for these effects are discussed, but further investigations of any causative relation are still the subject of ongoing studies.

Funder

Natural Sciences and Engineering Research Council of Canada

European Research Council

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference66 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3