A method to improve the utilization of GNSS observation for water vapor tomography

Author:

Yao Y. B.,Zhao Q. Z.,Zhang B.

Abstract

Abstract. Existing water vapor tomographic methods use Global Navigation Satellite System (GNSS) signals penetrating the entire research area while they do not consider signals passing through its sides. This leads to the decreasing use of observed satellite signals and allows for no signals crossing from the bottom or edge areas especially for those voxels in research areas of interest. Consequently, the accuracy of the tomographic results for the bottom of a research area, and the overall reconstructed accuracy do not reach their full potential. To solve this issue, an approach which uses GPS data with both signals that pass the side and top of a research area is proposed. The advantages of proposed approach include improving the utilization of existing GNSS observations and increasing the number of voxels crossed by satellite signals. One point should be noted that the proposed approach needs the support of radiosonde data inside the tomographic region. A tomographic experiment was implemented using observed GPS data from the Continuously Operating Reference System (CORS) Network of Zhejiang Province, China. The comparison of tomographic results with data from a radiosonde shows that the root mean square error (RMS), bias, mean absolute error (MAE), and standard deviation (SD) of the proposed approach are superior to those of the traditional method.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3