Harmonization and comparison of vertically resolved atmospheric state observations: methods, effects, and uncertainty budget
-
Published:2019-08-15
Issue:8
Volume:12
Page:4379-4391
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Keppens ArnoORCID, Compernolle StevenORCID, Verhoelst Tijl, Hubert Daan, Lambert Jean-Christopher
Abstract
Abstract. Many applications of atmospheric composition and climate data involve the comparison or combination of vertically resolved atmospheric state variables. Calculating differences and combining data require harmonization of data representations in terms of physical quantities and vertical sampling at least. If one or both datasets result from a retrieval process, knowledge of prior information and averaging kernel matrices in principle allows retrieval differences to be accounted for as well. Spatiotemporal mismatch of the sensed air masses and its contribution to the data discrepancies can be estimated with chemistry transport modeling support. In this work an overview of harmonization or matching operations for atmospheric profile observations is provided. The effect of these manipulations on the information content of the original data and on the uncertainty budget of data comparisons is examined and discussed.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference23 articles.
1. Calisesi, Y., Soebijanta, V. T., and van Oss, R.: Regridding of remote
soundings: Formulation and application to ozone profile comparison, J.
Geophys. Res., 110, 1–8, https://doi.org/10.1029/2005JD006122, 2005. a 2. Ceccherini, S., Carli, B., and Raspollini, P.: The average of atmospheric
vertical profiles, Opt. Express, 22, 24808–24816,
https://doi.org/10.1364/OE.22.024808, 2014. a 3. Ceccherini, S., Carli, B., Tirelli, C., Zoppetti, N., Del Bianco, S., Cortesi, U., Kujanpää, J., and Dragani, R.: Importance of interpolation and coincidence errors in data fusion, Atmos. Meas. Tech., 11, 1009–1017, https://doi.org/10.5194/amt-11-1009-2018, 2018. a 4. Cortesi, U., Ceccherini, S., Del Bianco, S., Gai, M., Tirelli, C., Zoppetti,
N., Barbara, F., Bonazountas, M., Argyridis, A., Bós, A., Loenen, E., Arola,
A., Kujanpää, J., Lipponen, A., Wandji Nyamsi, W., van der A, R., van Peet,
J., Tuinder, O., Farruggia, V., Masini, A., Simeone, E., Dragani, R.,
Keppens, A., Lambert, J.-C., van Roozendael, M., Lerot, C., Yu, H., and
Verberne, K.: Advanced Ultraviolet Radiation and Ozone Retrieval
for Applications (AURORA): A Project Overview, Atmosphere, 9,
454, https://doi.org/10.3390/atmos9110454, 2018. a 5. Fassó, A., Verhoelst, T., and Lambert, J. C.: Measurement mismatch
studies and their impact on data comparisons. EC Horizon2020
GAIA-CLIM technical Report / Deliverable D3.4, Tech. rep.,
University of Bergamo, available at: http://www.gaia-clim.eu (last access: 13 August 2019), 2017. a
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|