Using eddy covariance to measure the dependence of air–sea CO<sub>2</sub> exchange rate on friction velocity
-
Published:2018-03-28
Issue:6
Volume:18
Page:4297-4315
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Landwehr SebastianORCID, Miller Scott D., Smith Murray J., Bell Thomas G.ORCID, Saltzman Eric S.ORCID, Ward Brian
Abstract
Abstract. Parameterisation of the air–sea gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of air–sea interaction research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for air–sea flux measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC) measurements.Here, we present a revised analysis of eddy covariance measurements of air–sea CO2 and momentum fluxes from the Southern Ocean Surface Ocean Aerosol Production (SOAP) study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u*) than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3–23 m s−1), the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean–Atmosphere Response Experiment (COARE) model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.
Funder
Norges Forskningsråd Directorate for Geosciences Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference57 articles.
1. Bell, T. G., De Bruyn, W., Miller, S. D., Ward, B., Christensen, K. H., and Saltzman, E. S.: Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed, Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013, 2013. 2. Bell, T. G., Landwehr, S., Miller, S. D., de Bruyn, W. J., Callaghan, A. H., Scanlon, B., Ward, B., Yang, M., and Saltzman, E. S.: Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds, Atmos. Chem. Phys., 17, 9019–9033, https://doi.org/10.5194/acp-17-9019-2017, 2017. 3. Blomquist, B., Huebert, B., Fairall, C., Bariteau, L., Edson, J., Hare, J., and McGillis, W.: Advances in air–sea CO2 flux measurement by eddy correlation, Bound.-Lay. Meteorol., 152, 245–276, https://doi.org/10.1007/s10546-014-9926-2, 2014. 4. Blomquist, B. W., Huebert, B. J., Fairall, C. W., and Faloona, I. C.: Determining the sea-air flux of dimethylsulfide by eddy correlation using mass spectrometry, Atmos. Meas. Tech., 3, 1–20, https://doi.org/10.5194/amt-3-1-2010, 2010. 5. Boutin, J., Quilfen, Y., Merlivat, L., and Piolle, J. F.: Global average of air–sea CO2 transfer velocity from QuikSCAT scatterometer wind speeds, J. Geophys. Res.-Oceans, 114, C04007, https://doi.org/10.1029/2007JC004168, 2009.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|