The effect of tillage depth and traffic management on soil properties and root development during two growth stages of winter wheat (<i>Triticum aestivum</i> L.)

Author:

Hobson DavidORCID,Harty Mary,Tracy Saoirse R.ORCID,McDonnell Kevin

Abstract

Abstract. The management of agricultural soils during crop establishment can affect root development due to changes in the soil structure. This paper assesses the influence of tillage depth (250 mm, 100 mm, and zero tillage) and traffic management (conventional tyre pressure, low tyre pressure, and no traffic) on wheat root system architecture during winter wheat (Triticum aestivum L.) tillering and flowering growth stages (GS) at a long-term tillage trial site. The study revealed that zero-tillage systems increased crop yield through significantly greater root biomass (P<0.001), root length density, and deeper seminal rooting analysed using X-ray computed tomography (CT) (P<0.001) compared with trafficked treatments. In general, conventional-pressure traffic had a significant negative influence on the crop yield (P<0.01), root development (0.001), bulk density (P<0.05), and total soil porosity (P<0.05) of deep- and shallow-tillage conventional-pressure systems compared with no-traffic zero- and deep-tillage systems. Visual improvements in soil structure under zero-tillage conditions may have improved crop rooting in zero-tillage treatments through vertical pore fissures (biopores), enhancing water uptake during the crop flowering period. This study highlights the increasing implications of soil structural damage on root system architecture created by machinery traffic in crop production. Although the tillage method was less important, the constricted root systems were more pronounced in conventional-pressure shallow-tillage and deep-tillage systems, emphasizing the importance of using controlled-traffic farming methods to improve soil management and reduce the trafficked areas of agricultural fields.

Funder

Science Foundation Ireland

Publisher

Copernicus GmbH

Subject

Soil Science

Reference84 articles.

1. AHDB: Wheat growth guide, AHDB Cereals &amp; Oilseeds, Stoneleigh Park, Kenilworth, Warwickshire, CV8 2TL, Agriculture and Horticulture development board, https://ahdb.org.uk/knowledge-library/wheat-growth-guide (last access: 24 May 2022), 2018.

2. Akker, J. J. H. V. D. and Canarache, A.: Two European concerted actions on subsoil compaction, Wageningen Environ. Res., 42, 15–22, 2001.

3. Alameda, D., Anten, N. P. R., and Villar, R.: Soil compaction effects on growth and root traits of tobacco depend on light, water regime and mechanical stress, Soil Till. Res., 120, 121–129, 2012.

4. Angers, D. A. and Caron, J.: Plant-induced Changes in Soil Structure: Processes and Feedbacks, Biogeochemistry, 42, 55–72, 1998.

5. Arvidsson, J.: Influence of soil texture and organic matter content on bulk density, air content, compression index and crop yield in field and laboratory compression experiments, Soil Till. Res., 49, 159–170, https://doi.org/10.1016/S0167-1987(98)00164-0, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3