Carbon dynamics and changing winter conditions: a review of current understanding and future research directions

Author:

Haei M.,Laudon H.ORCID

Abstract

Abstract. Despite the important role of winters for northern ecosystems, it remains the least understood of all the seasons. Here, we summarize existing empirical studies on winter climate and carbon dynamics and highlight some important future research directions. The existing studies include field-scale snow-cover manipulation experiments representing extreme soil climate conditions, laboratory soil incubations studying the influential factors, and time-series of climate and carbon data showing long-term natural variations and existing trends. Most of the field and laboratory experiments indicate an increased soil organic carbon loss due to soil frost. Long-term data demonstrate temporal changes in winter CO2 efflux and its important contribution to the annual fluxes. A number of research priorities to improve our understanding of winter conditions include (i) ecosystem processes in the fall-winter and winter-spring shoulder seasons, (ii) extreme events, (iii) partitioning into organic- and inorganic carbon, (iv) carry-over effects of winter and growing season on each other, (v) long-term cumulative impacts, and (vi) improved winter process modelling. These areas of research would enable an improved understanding of the role of the snow covered period for carbon cycling, and provide a basis for more realistic models that include winter processes.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3