Assessing the potential of amino acid δ<sup>13</sup>C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis
Author:
Larsen T.ORCID, Bach L. T.ORCID, Salvatteci R., Wang Y. V., Andersen N.ORCID, Ventura M., McCarthy M. D.
Abstract
Abstract. Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles, and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing biosynthetic origin of amino acid carbon skeletons, based on natural occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions; and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results underscore that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e. isoleucine, lysine, leucine and tyrosine), bacterial derived amino acids ranged from 10–15% in the sediment layers from the last 5000 years to 35% during the last glacial period. The larger bacterial fractions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to a substantially larger degree than suggested by changes in total organic nitrogen and carbon content. Taken together, these culturing and sediment studies suggest that δ13CAA patterns in sediments represent a novel proxy for understanding both primary production sources, as well as direct bacterial role in the ultimate preservation of sedimentary organic matter.
Publisher
Copernicus GmbH
Reference54 articles.
1. Araujo, S. D. and Garcia, V. M. T.: Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids, Aquaculture, 246, 405–412, https://doi.org/10.1016/j.aquaculture.2005.02.051, 2005. 2. Arthur, K. E., Kelez, S., Larsen, T., Choy, C. A., and Popp, B. N.: Tracing the biosynthetic source of essential amino acids in marine turtles using δ13C fingerprints, Ecology, 95, 1285–1293, https://doi.org/10.1890/13-0263.1, 2014. 3. Bach, L. T., Bauke, C., Meier, K. J. S., Riebesell, U., and Schulz, K. G.: Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi, Biogeosciences, 9, 3449–3463, https://doi.org/10.5194/bg-9-3449-2012, 2012 4. Batista, F. C., Ravelo, A. C., Crusius, J., Casso, M. A., and McCarthy, M. D.: Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle, Geochim. Cosmochim. Ac., 142, 553–569, https://doi.org/10.1016/j.gca.2014.08.002, 2014. 5. Bromke, M.: Amino Acid Biosynthesis Pathways in Diatoms, Metabolites, 3, 294–311, 2013.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|