Effects of different N sources on riverine DIN export and retention in subtropical high-standing island, Taiwan
Author:
Huang J.-C.ORCID, Lee T.-Y.ORCID, Lin T.-C.ORCID, Hein T.ORCID, Lee L.-C., Shih Y.-T.ORCID, Kao S.-J., Shiah F.-K., Lin N.-H.
Abstract
Abstract. Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities has substantially altered N cycle both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind to the most rapidly industrializing east coast of China can be a demonstration site for extreme high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds classified into low-, moderate-, and highly-disturbed categories based on population density to illustrate their differences in nitrogen inputs through atmospheric N deposition, synthetic fertilizers and human emission and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ~ 3800 kg N km−2 yr−1, approximately 18-fold higher than the global average mostly due to the large input of synthetic fertilizers. The average riverine DIN export ratio is 0.30–0.51, which is much higher than the average of 0.20–0.25 of large rivers around the world indicating excessive N input relative to ecosystem demand or retention capacity. The low-disturbed watersheds, despite of high N input, only export 0.06–0.18 of the input so were well buffered to changes in input quantity suggesting high efficiency of nitrogen usage or high N retention capacity of the less disturbed watersheds. The high retention capacity probably is due to the effective uptake by secondary forests in the watersheds. The moderate-disturbed watersheds show a linear increase of output with increases in total N inputs and a mean DIN export ratio of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watershed is the relative proportions of agricultural land and forests, not the built-up lands. Thus, their greater DIN export quantity could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratio of the highly-disturbed watersheds is 0.42–0.53, which is very high and suggests that much of the N input is transported downstream and the need of improvement in wastewater treatment capacity or sewerage systems. The increases in riverine DIN export ratio along with the gradient of human disturbance indicates a gradient in N saturation in subtropical Taiwan. Our results help to understand factors controlling riverine DIN export and provide a sound basis for N emissions/pollution control.
Publisher
Copernicus GmbH
Reference45 articles.
1. Aber, J. D., Nadelhoffer, K. J., Steudler, P., and Melillo, J. M.: Nitrogen saturation in northern forest ecosystems, Bioscience, 39, 378–386, 1989. 2. Aber, J. D., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., and Fernandez, I.: Nitrogen saturation in temperate forest ecosystems – hypotheses revisited, Bioscience, 48, 921–934, 1998. 3. Alexander, R. B., Smith, R. A., Schwarz, G. E.: Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico, Nature, 403, 758–761, 2000. 4. Bouwman, A. F., Bierkens, M. F. P., Griffioen, J., Hefting, M. M., Middelburg, J. J., Middelkoop, H., and Slomp, C. P.: Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models, Biogeosciences, 10, 1–22, https://doi.org/10.5194/bg-10-1-2013, 2013. 5. Brown, L. R., Cuffney, T. F., Coles, J. F., Fitzpatrick, F., McMahon, G., Steuer, J., Bell, A. H., and May, J. T.: Urban streams across the USA: lessons learned from studies in 9 metropolitan areas, J. N. Am. Benthol. Soc., 28, 1051–1069, 2009.
|
|