Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in a dry grassland

Author:

Balogh J.ORCID,Papp M.,Pintér K.,Fóti Sz.,Posta K.,Eugster W.ORCID,Nagy Z.

Abstract

Abstract. Summer droughts projected to increase in Central Europe due to climate change strongly influence the carbon cycle of ecosystems. Persistent respiration activities during drought periods are responsible for a significant carbon loss, which may turn the ecosystem from sink to source of carbon. There are still gaps in our knowledge regarding the characteristic changes taking place in the respiration of the different components of the ecosystem respiration in response to drought events. Here, we combined a physical separation of soil respiration components with continuous measurements of soil CO2 efflux and its isotopic (13C) signal at a dry grassland site in Hungary. The physical separation of soil respiration components was achieved by the use of inox meshes and tubes inserted into the soil. The root-excluded and root- and mycorrhiza-excluded treatments served to measure the isotopic signal of the rhizospheric, mycorrhizal fungi and heterotrophic components, respectively. In the dry grassland investigated in this study the three components of the soil CO2 efflux decreased at different rates under drought conditions. During drought the contribution made by the heterotrophic components was the highest. Rhizospheric component was the most sensitive to soil drying with its relative contribution to the total soil respiration dropping from 71 ± 4 % (non-stressed) to 36 ± 12 % under drought conditions. According to our results, the heterotrophic component of soil respiration is the major contributor to the respiration activities during drought events.

Funder

Hungarian Scientific Research Fund

Magyar Tudományos Akadémia

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3