Author:
Liu J.,Geng C.,Mu Y.,Zhang Y.,Wu H.
Abstract
Abstract. Using a dynamic enclosure, the exchange fluxes of carbonyl sulfide (COS) between the atmosphere and 18 soils from 10 provinces in China were investigated. The emission or uptake of COS from the soils was highly dependent on the soil type, soil temperature, soil moisture, and atmospheric COS mixing ratio. In general, with the only exception being paddy soils, the soils in this investigation acted as sinks for atmospheric COS under wide ranges of soil temperature and soil moisture. Two intensively investigated wheat soils and one forest soil, had optimal soil temperatures for COS uptake of around 15°C, and the optimal soil water content varied from 13 to 58%. The two paddy soils, exponentially COS emission fluxes increased with increasing soil temperature, and decreased COS emission fluxes with increased soil water content. However, negligible emission was found when the paddy soils were under waterlogging status. The observed compensation points for various soils were different and increased significantly with soil temperature. The laboratory simulation agreed with the preliminary field measurements for the paddy soil in Jiaxing, Zhejiang province.