Global upper-tropospheric formaldehyde: seasonal cycles observed by the ACE-FTS satellite instrument

Author:

Dufour G.,Szopa S.,Barkley M. P.,Boone C. D.,Perrin A.,Palmer P. I.,Bernath P. F.

Abstract

Abstract. Seasonally-resolved upper tropospheric profiles of formaldehyde (HCHO) observed by the ACE Fourier transform spectrometer (ACE-FTS) on a near-global scale are presented for the time period from March 2004 to November 2006. Large upper tropospheric HCHO mixing ratios (>150 pptv) are observed during the growing season of the terrestrial biosphere in the Northern Hemisphere and during the biomass burning season in the Southern Hemisphere. The total errors estimated for the retrieved mixing ratios range from 30 to 40% in the upper troposphere and increase in the lower stratosphere. The sampled HCHO concentrations are in satisfactory agreement with previous aircraft and satellite observations with a negative bias (<25%) within observation errors. An overview of the seasonal cycle of the upper tropospheric HCHO is given for different latitudes, with a particular focus on mid-to-high latitudes that are well sampled by the observations. A maximum is observed during summer, i.e. during the growing season, in the northern mid- and high latitudes. The influence of biomass burning is visible in HCHO upper tropospheric concentrations during the September-to-October period in the southern tropics and subtropics. Comparisons with two state-of-the-art models (GEOS-Chem and LMDz-INCA) show that the models capture well the seasonal variations observed in the Northern Hemisphere (correlation >0.9). Both models underestimate the summer maximum over Europe and Russia and differences in the emissions used for North America result in a good reproduction of the summer maximum by GEOS-Chem but in an underestimate by LMDz-INCA. Globally, GEOS-Chem reproduces well the observations on average over one year but has some difficulties in reproducing the spatial variability of the observations. LMDz-INCA shows significant bias in the Southern Hemisphere, perhaps related to an underestimation of methane, but better reproduces the temporal and spatial variations. The differences between the models underline the large uncertainties that remain in the emissions of HCHO precursors.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3