The ESCAPE project: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

Author:

Müller Andreas,Deconinck Willem,Kühnlein ChristianORCID,Mengaldo Gianmarco,Lange Michael,Wedi Nils,Bauer PeterORCID,Smolarkiewicz Piotr K.,Diamantakis Michail,Lock Sarah-JaneORCID,Hamrud Mats,Saarinen Sami,Mozdzynski George,Thiemert Daniel,Glinton Michael,Bénard Pierre,Voitus Fabrice,Colavolpe Charles,Marguinaud Philippe,Zheng Yongjun,Van Bever Joris,Degrauwe Daan,Smet Geert,Termonia Piet,Nielsen Kristian P.,Sass Bent H.,Poulsen Jacob W.,Berg Per,Osuna Carlos,Fuhrer OliverORCID,Clement Valentin,Baldauf MichaelORCID,Gillard Mike,Szmelter JoannaORCID,O'Brien Enda,McKinstry Alastair,Robinson Oisín,Shukla Parijat,Lysaght Michael,Kulczewski Michał,Ciznicki Milosz,Piątek Wojciech,Ciesielski Sebastian,Błażewicz Marek,Kurowski Krzysztof,Procyk Marcin,Spychala Pawel,Bosak Bartosz,Piotrowski Zbigniew P.ORCID,Wyszogrodzki AndrzejORCID,Raffin ErwanORCID,Mazauric Cyril,Guibert DavidORCID,Douriez Louis,Vigouroux XavierORCID,Gray Alan,Messmer Peter,Macfaden Alexander J.,New Nick

Abstract

Abstract. In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche à l'Opérationnel à Meso-Echelle) and ALADIN (Aire Limitée Adaptation Dynamique Développement International); and COSMO–EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU–GPU arrangements.

Funder

H2020 Future and Emerging Technologies

Publisher

Copernicus GmbH

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3