An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO<sub>2</sub> concentrations

Author:

Boucher É.ORCID,Guiot J.ORCID,Hatté C.ORCID,Daux V.,Danis P.-A.,Dussouillez P.

Abstract

Abstract. Over the last decades, dendroclimatologists have relied upon linear transfer functions to reconstruct historical climate. Transfer functions need to be calibrated using recent data from periods where CO2 concentrations reached unprecedented levels (near 400 ppm – parts per million). Based on these transfer functions, dendroclimatologists must then reconstruct a different past, a past where CO2 concentrations were far below 300 ppm. However, relying upon transfer functions calibrated in this way may introduce an unanticipated bias in the reconstruction of past climate, particularly if CO2 has had a noticeable impact on tree growth and water use efficiency since the beginning of the industrial era. As an alternative to the transfer function approach, we run the MAIDENiso ecophysiological model in an inverse mode to link together climatic variables, atmospheric CO2 concentrations and tree growth parameters. Our approach endeavors to find the optimal combination of meteorological conditions that best simulate observed tree ring patterns. We test our approach in the Fontainebleau Forest (France). By comparing two different CO2 scenarios, we present evidence that increasing CO2 concentrations have had a slight, yet significant, effect on the reconstruction results. We demonstrate that realistic CO2 concentrations need to be inputted in the inversion so that observed increasing trends in summer temperature are adequately reconstructed. Fixing CO2 concentrations at preindustrial levels (280 ppm) results in undesirable compensation effects that force the inversion algorithm to propose climatic values that lie outside from the bounds of observed climatic variability. Ultimately, the inversion approach has several advantages over traditional transfer function approaches, most notably its ability to separate climatic effects from CO2 imprints on tree growth. Therefore, our method produces reconstructions that are less biased by anthropogenic greenhouse gas emissions and that are based on sound ecophysiological knowledge.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3