Contaminants in Urban Stormwater: Barcelona case study

Author:

Teixidó MarcORCID,Schmidlin Diego,Xu Jiaqi,Scheiber Laura,Chesa Maria JoséORCID,Vázquez-Suñé Enric

Abstract

Abstract. Today's cities face simultaneous challenges due to rapidly growing populations, urban sprawl, climate change, and environmental pollution which pose a pressure on our traditional urban drinking water supplies. In this context, stormwater could augment our over-drafted urban groundwater resources. However, urban stormwater runoff carries a myriad of dissolved contaminants (e.g., organics, metals, nutrients), which pose a serious risk to the environmental and public health. Moreover, dissolved contaminants of urban origin – such as trace metals and organic compounds of emerging concern – may not be adequately removed by conventional stormwater treatments. Therefore, it is of the utmost importance to fully understand stormwater contaminant presence, transport, and fate in the built environment to design novel or improve conventional treatment systems. To address this knowledge gap, we have conducted 7 field sampling campaigns during storm events at different Barcelona locations (within 3 districts) to investigate contaminant presence in different urban compartments (e.g., roofs, conventional streets with automobile traffic, pedestrian streets, and green infrastructure outlets). Preliminary results have confirmed presence of toxic metals in Barcelona urban rain and stormwater runoff along with significant differences depending on the catchment areas. After a storm event, trace metal concentrations followed the order: roof rain < pedestrian street runoff < conventional street runoff. Additionally, blue-green infrastructures (bioretention systems) had lower mean metal concentrations at the effluent (outlet) than the influents (inlet). Our initial results on metal occurrence in stormwater collected in the city of Barcelona will provide stormwater quality foundation for water agencies, municipalities, and companies in other water-stressed regions with Mediterranean climate.

Funder

Agència de Gestió d'Ajuts Universitaris i de Recerca

Publisher

Copernicus GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3