Probabilistic Gridded Seasonal Sea Ice Presence Forecasting using Sequence to Sequence Learning
Author:
Asadi Nazanin,Lamontagne Philippe,King Matthew,Richard Martin,Scott K. Andrea
Abstract
Abstract. Accurate and timely forecasts of sea ice conditions are crucial for safe shipping operations in the Canadian Arctic and other ice-infested waters. Given the recent observations on the declining trend of Arctic sea ice extent over the past decades due to global warming, machine learning (ML) approaches are deployed to provide accurate short-term to long-term forecasting. This study unlike previous ML approaches in the sea-ice forecasting domain provides a daily spatial map of the probability of ice in the study domain up to 90 days of lead time. The predictions are further used to predict freeze-up/breakup dates and show their capability to capture these events within a valid time period (7 days) at specific locations of interest to communities.
Funder
National Research Council Canada
Publisher
Copernicus GmbH
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献