Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings

Author:

Kaspari S.,Painter T. H.ORCID,Gysel M.ORCID,Skiles S. M.,Schwikowski M.ORCID

Abstract

Abstract. Black carbon (BC) and dust deposited on snow and glacier surfaces can reduce the surface albedo, accelerate snow and ice melt, and trigger albedo feedback. Assessing BC and dust concentrations in snow and ice in the Himalaya is of interest because this region borders large BC and dust sources, and seasonal snow and glacier ice in this region are an important source of water resources. Snow and ice samples were collected from crevasse profiles and snow pits at elevations between 5400 and 6400 m a.s.l. from Mera glacier located in the Solu-Khumbu region of Nepal during spring and fall 2009, providing the first observational data of BC concentrations in snow and ice from the southern slope of the Himalaya. The samples were measured for Fe concentrations (used as a dust proxy) via ICP-MS, total impurity content gravimetrically, and BC concentrations using a Single Particle Soot Photometer (SP2). Measured BC concentrations underestimate actual BC concentrations due to changes to the sample during storage and loss of BC particles in the ultrasonic nebulizer; thus, we correct for the underestimated BC mass. BC and Fe concentrations are substantially higher at elevations < 6000 m due to post-depositional processes including melt and sublimation and greater loading in the lower troposphere. Because the largest areal extent of snow and ice resides at elevations < 6000 m, the higher BC and dust concentrations at these elevations can reduce the snow and glacier albedo over large areas, accelerating melt, affecting glacier mass balance and water resources, and contributing to a positive climate forcing. Radiative transfer modeling constrained by measurements at 5400 m at Mera La indicates that BC concentrations in the winter–spring snow/ice horizons are sufficient to reduce albedo by 6–10% relative to clean snow, corresponding to localized instantaneous radiative forcings of 75–120 W m−2. The other bulk impurity concentrations, when treated separately as dust, reduce albedo by 40–42% relative to clean snow and give localized instantaneous radiative forcings of 488 to 525 W m−2. Adding the BC absorption to the other impurities results in additional radiative forcings of 3 W m−2. The BC and Fe concentrations were used to further examine relative absorption of BC and dust. When dust concentrations are high, dust dominates absorption, snow albedo reduction, and radiative forcing, and the impact of BC may be negligible, confirming the radiative transfer modeling. When impurity concentrations are low, the absorption by BC and dust may be comparable; however, due to the low impurity concentrations, albedo reductions are small. While these results suggest that the snow albedo and radiative forcing effect of dust is considerably greater than BC, there are several sources of uncertainty. Further observational studies are needed to address the contribution of BC, dust, and colored organics to albedo reductions and snow and ice melt, and to characterize the time variation of radiative forcing.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3