Rethinking Craig and Gordon's approach to modeling isotopic compositions of marine boundary layer vapor
-
Published:2019-03-29
Issue:6
Volume:19
Page:4005-4024
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Feng XiahongORCID, Posmentier Eric S., Sonder Leslie J., Fan Naixin
Abstract
Abstract. We develop a one-dimensional (1-D) steady-state isotope
marine boundary layer (MBL) model that includes meteorologically important
features missing in models of the Craig and Gordon type, namely height-dependent
diffusion and mixing, lifting to deliver air to the free troposphere, and
convergence of subsiding air. Kinetic isotopic fractionation results from
this height-dependent diffusion that starts as pure molecular diffusion at
the air–water interface and increases with height due to turbulent eddies.
Convergence causes mixing of dry, isotopically depleted air with ambient
air. Model results fill a quadrilateral in δD–δ18O
space, of which three boundaries are defined by (1) vapor in
equilibrium with various sea surface temperatures (SSTs), (2) mixing of vapor
in equilibrium with seawater and vapor in subsiding air, and (3) vapor that
has experienced maximum possible kinetic fractionation. Model processes also
cause variations in d-excess of MBL vapor. In particular, mixing of
relatively high d-excess descending and converging air into the MBL increases
d-excess, even without kinetic isotope fractionation. The model is tested by
comparison with seven data sets of marine vapor isotopic ratios, with
excellent correspondence. About 95 % of observational data fall within the
quadrilateral predicted by the model. The distribution of observations also
highlights the significant influence of vapor from nearby converging
descending air on isotopic variations within the MBL. At least three factors
may explain the ∼5 % of observations that fall slightly
outside of the predicted regions in δD–δ18O and
d-excess–δ18O space: (1) variations in seawater isotopic ratios,
(2) variations in isotopic composition of subsiding air, and (3) influence of sea spray.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference56 articles.
1. Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P., Caillon,
N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Fluckiger,
J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Gronvold, K., Gundestrup, N. S.,
Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel,
J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte,
V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O., Raynaud,
D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H.,
Siggard-Andersen, M. L., Steffensen, J. P., Stocker, T., Sveinbjornsdottir, A.
E., Svensson, A., Takata, M., Tison, J. L., Thorsteinsson, T., Watanabe, O.,
Wilhelms, F., White, J. W., and North Greenland Ice Core Project: High-resolution
record of Northern Hemisphere climate extending into the last interglacial
period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004. 2. Benetti, M., Reverdin, G., Pierre, C., Merlivat, L., Risi, C., Steen-Larsen,
H. C., and Vimeux, F.: Deuterium excess in marine water vapor: dependency on
relative humidity and surface wind speed during evaporation, J. Geophys.
Res.-Atmos., 119, 584–593, https://doi.org/10.1002/2013JD020535, 2014. 3. Benetti, M., Aloisi, G., Reverdin, G., Risi, C., and Sèze, G.: Importance
of boundary layer mixing for the isotopic composition of surface vapor over the
subtropical North Atlantic Ocean, J. Geophys. Res.-Atmos., 120, 2190–2209,
https://doi.org/10.1002/2014jd021947, 2015. 4. Benetti, M., Steen-Larsen, H. C., Reverdin, G., Sveinbjornsdottir, A. E.,
Aloisi, G., Berkelhammer, M. B., Bourles, B., Bourras, D., de Coetlogon, G.,
Cosgrove, A., Faber, A. K., Grelet, J., Hansen, S. B., Johnson, R., Legoff, H.,
Martin, N., Peters,<span id="page4024"/> A. J., Popp, T. J., Reynaud, T., and Winther, M.: Stable
isotopes in the atmospheric marine boundary layer water vapour over the Atlantic
Ocean, 2012–2015, Scientific Data, 4, 160128, https://doi.org/10.1038/sdata.2016.128, 2017. 5. Benetti, M., Lacour, J. L., Sveinbjörnsdóttir, A. E., Aloisi, G.,
Reverdin, G., Risi, C., Peters, A. J., and Steen-Larsen, H. C.: A Framework to
Study Mixing Processes in the Marine Boundary Layer Using Water Vapor Isotope
Measurements, Geophys. Res. Lett., 45, 2524–2532, https://doi.org/10.1002/2018gl077167, 2018.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|