Quantifying the UK's carbon dioxide flux: an atmospheric inverse modelling approach using a regional measurement network
-
Published:2019-04-04
Issue:7
Volume:19
Page:4345-4365
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
White Emily D.ORCID, Rigby MatthewORCID, Lunt Mark F., Smallman T. LukeORCID, Comyn-Platt EdwardORCID, Manning Alistair J., Ganesan Anita L.ORCID, O'Doherty SimonORCID, Stavert Ann R., Stanley KieranORCID, Williams Mathew, Levy PeterORCID, Ramonet Michel, Forster Grant L.ORCID, Manning Andrew C.ORCID, Palmer Paul I.ORCID
Abstract
Abstract. We present a method to derive atmospheric-observation-based estimates of carbon dioxide (CO2) fluxes
at the national scale, demonstrated using data from a network of surface
tall-tower sites across the UK and Ireland over the period 2013–2014. The
inversion is carried out using simulations from a Lagrangian chemical
transport model and an innovative hierarchical Bayesian Markov chain Monte
Carlo (MCMC) framework, which addresses some of the traditional problems
faced by inverse modelling studies, such as subjectivity in the
specification of model and prior uncertainties. Biospheric fluxes related to
gross primary productivity and terrestrial ecosystem respiration are solved
separately in the inversion and then combined a posteriori to determine net
ecosystem exchange of CO2. Two different models, Data
Assimilation Linked Ecosystem Carbon (DALEC) and Joint UK Land Environment Simulator (JULES),
provide prior estimates for these fluxes. We carry out separate inversions
to assess the impact of these different priors on the posterior flux
estimates and evaluate the differences between the prior and posterior
estimates in terms of missing model components. The Numerical Atmospheric
dispersion Modelling Environment (NAME) is used to relate fluxes to the
measurements taken across the regional network. Posterior CO2 estimates
from the two inversions agree within estimated uncertainties, despite large
differences in the prior fluxes from the different models. With our method,
averaging results from 2013 and 2014, we find a total annual net biospheric
flux for the UK of 8±79 Tg CO2 yr−1 (DALEC prior) and
64±85 Tg CO2 yr−1 (JULES prior), where negative values represent an
uptake of CO2. These biospheric CO2 estimates show that annual UK
biospheric sources and sinks are roughly in balance. These annual mean
estimates consistently indicate a greater net release of CO2 than the
prior estimates, which show much more pronounced uptake in summer months.
Funder
Department for Business, Energy and Industrial Strategy, UK Government
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference69 articles.
1. Atkin, O. K., Bloomfield, K. J., Reich, P. B., Tjoelker, M. G., Asner, G. P.,
Bonal, D., Bönisch, G., Bradford, M. G., Cernusak, L. A., Cosio, E. G.,
Creek, D., Crous, K. Y., Domingues, T. F., Dukes, J. S., Egerton, J. J. G.,
Evans, J. R., Farquhar, G. D., Fyllas, N. M., Gauthier, P. P. G., Gloor, E.,
Gimeno, T. E., Griffin, K. L., Guerrieri, R., Heskel, M. A., Huntingford, C.,
Ishida, F. Y., Kattge, J., Lambers, H., Liddell, M. J., Lloyd, J., Lusk, C. H.,
Martin, R. E., Maksimov, A. P., Maximov, T. C., Malhi, Y., Medlyn, B. E., Meir,
P., Mercado, L. M., Mirotchnick, N., Ng, D., Niinemets, Ü., O'Sullivan, O.
S., Phillips, O. L., Poorter, L., Poot, P., Prentice, I. C., Salinas, N.,
Rowland, L. M., Ryan, M. G., Sitch, S., Slot, M., Smith, N. G., Turnbull, M. H.,
VanderWel, M. C., Valladares, F., Veneklaas, E. J., Weerasinghe, L. K., Wirth,
C., Wright, I. J., Wythers, K. R., Xiang, J., Xiang, S., and Zaragoza-Castells,
J.: Global variability in leaf respiration in relation to climate, plant
functional types and leaf traits, New Phytol., 206, 614–636, https://doi.org/10.1111/nph.13253, 2015. 2. Baldocchi, D. D. and Wilson, K. B.: Modeling CO2 and water vapor
exchange of a temperate broadleaved forest across hourly to decadal time scales,
Ecol. Model., 142, 155–184, https://doi.org/10.1016/S0304-3800(01)00287-3, 2001. 3. Berchet, A., Pison, I., Chevallier, F., Bousquet, P., Conil, S., Geever, M.,
Laurila, T., Lavrič, J., Lopez, M., Moncrieff, J., Necki, J., Ramonet, M.,
Schmidt, M., Steinbacher, M., and Tarniewicz, J.: Towards better error statistics
for atmospheric inversions of methane surface fluxes, Atmos. Chem. Phys., 13,
7115–7132, https://doi.org/10.5194/acp-13-7115-2013, 2013. 4. Berry, J. A., Collatz, G. J., Defries, R. S., and Still, C. J.: ISLSCP II C4
Vegetation Percentage, Environmental Sciences Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, 2009. 5. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H.,
Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N.,
Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S.
B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model
description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699,
https://doi.org/10.5194/gmd-4-677-2011, 2011.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|