The distribution of sea-salt aerosol in the global troposphere
-
Published:2019-04-02
Issue:6
Volume:19
Page:4093-4104
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Murphy Daniel M., Froyd Karl D., Bian Huisheng, Brock Charles A.ORCID, Dibb Jack E., DiGangi Joshua P.ORCID, Diskin GlennORCID, Dollner MaximillianORCID, Kupc AgnieszkaORCID, Scheuer Eric M., Schill Gregory P.ORCID, Weinzierl BernadettORCID, Williamson Christina J., Yu PengfeiORCID
Abstract
Abstract. We present the first data on the concentration of sea-salt aerosol throughout
most of the depth of the troposphere and over a wide range of latitudes,
which were obtained during the Atmospheric Tomography (ATom) mission.
Sea-salt concentrations in the upper troposphere are very small, usually less
than 10 ng per standard m3 (about 10 parts per trillion by mass) and
often less than 1 ng m−3. This puts stringent limits on the
contribution of sea-salt aerosol to halogen and nitric acid chemistry in the
upper troposphere. Within broad regions the concentration of sea-salt aerosol
is roughly proportional to water vapor, supporting a dominant role for wet
scavenging in removing sea-salt aerosol from the atmosphere. Concentrations
of sea-salt aerosol in the winter upper troposphere are not as low as in the
summer and the tropics. This is mostly a consequence of less wet scavenging
in the drier, colder winter atmosphere. There is also a source of sea-salt
aerosol over pack ice that is distinct from that over open water. With a
well-studied and widely distributed source, sea-salt aerosol provides an
excellent test of wet scavenging and vertical transport of aerosols in
chemical transport models.
Funder
National Oceanic and Atmospheric Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference52 articles.
1. Alvarez-Aviles, L., Simpson, W. R., Douglas, T. A., Sturm, M., Perovich, D.,
and Domine, F.: Frost flower chemical composition during growth and its
implications for aerosol production and bromine activation, J. Geophys.
Res., 113, D21304, https://doi.org/10.1029/2008JD010277, 2008. 2. ATom: Measurements and modeling results from the NASA Atmospheric Tomography
Mission,
https://doi.org/10.5067/Aircraft/ATom/TraceGas_Aerosol_Global_Distribution,
2017. 3. Bellouin, N., Quaas, J., Morcrette, J.-J., and Boucher, O.: Estimates of
aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys., 13,
2045–2062, https://doi.org/10.5194/acp-13-2045-2013, 2013. 4. Bian, H., Colarco, P. R., Chin, M., Chen, G., Rodriguez, J. M., Liang, Q.,
Blake, D., Chu, D. A., da Silva, A., Darmenov, A. S., Diskin, G., Fuelberg,
H. E., Huey, G., Kondo, Y., Nielsen, J. E., Pan, X., and Wisthaler, A.:
Source attributions of pollution to the Western Arctic during the NASA ARCTAS
field campaign, Atmos. Chem. Phys., 13, 4707–4721,
https://doi.org/10.5194/acp-13-4707-2013, 2013. 5. Bian, H., Froyd, K., Murphy, D. M., Dibb, J., Chin, M., Colarco, P. R.,
Darmenov, A., da Silva, A., Kucsera, T. L., Schill, G., Yu, H., Bui, P.,
Dollner, M., Weinzierl, B., and Smirnov, A.: Observationally constrained
analysis of sea salt aerosol in the marine atmosphere, Atmos. Chem. Phys.
Discuss., https://doi.org/10.5194/acp-2019-18, in review, 2019.
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|