Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields

Author:

Lin Cheng-HsienORCID,Grant Richard H.,Heber Albert J.,Johnston Cliff T.

Abstract

Abstract. Open-path Fourier transform infrared spectroscopy (OP-FTIR) has often been used to measure hazardous or trace gases from hot point sources (e.g. volcano, industrial, or agricultural facilities) but seldom used to measure greenhouse gases (GHGs) from field-scale sources (e.g. agricultural soils). Closed-path mid-IR laser-based N2O, nondispersive-IR CO2 analysers, and OP-FTIR were used to measure concentrations of N2O and CO2 at a maize cropping system during 9–19 June 2014. To measure N2O and CO2 concentrations accurately, we developed a quantitative method of N2O∕CO2 analysis that minimized interferences from diurnal changes of humidity and temperature. Two chemometric multivariate models, classical least squares (CLS) and partial least squares (PLS), were developed. This study evaluated various methods to generate the single-beam background spectra and different spectral regions for determining N2O and CO2 concentrations from OP-FTIR spectra. A standard extractive method was used to measure the actual path-averaged concentrations along an OP-FTIR optical path in situ, as a benchmark to assess the feasibilities of these quantitative methods. Within an absolute humidity range of 5000–20 000 ppmv and a temperature range of 10–35 ∘C, we found that the CLS model underestimated N2O concentrations (bias =-4.9±3.1 %) calculated from OP-FTIR spectra, and the PLS model improved the accuracy of calculated N2O concentrations (bias =1.4±2.3 %). The bias of calculated CO2 concentrations was -1.0±2.8 % using the CLS model. These methods suggested that environmental variables potentially lead to biases in N2O and CO2 estimations from OP-FTIR spectra and may help OP-FTIR users avoid dependency on extractive methods of calibrations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3