Concept for an electrostatic focusing device for continuous ambient pressure aerosol concentration

Author:

Woo Joseph L.ORCID,Sareen Neha,Schwier Allison N.,McNeill V. Faye

Abstract

Abstract. We present a concept for enhancing the concentration of charged submicron aerosol particles in a continuous-flow stream using in situ electrostatic focusing. It is proposed that electrostatic focusing can enable the continuous, isothermal concentration of aerosol particles at ambient pressure, without altering their chemical composition. We model this approach theoretically and demonstrate proof of concept via laboratory measurements using a prototype. The prototype design consists of a nozzle-probe flow system analogous to a virtual impactor. The device was tested in the laboratory using submicron, monodisperse stearic acid particles. Particles were charged using a unipolar charger then concentrated using a cylindrical electrostatic immersion lens to direct the charged submicron particles into the sample probe. Under applied lens voltages ranging from 0 V to 30 kV, aerosol concentration increased up to 15 %. Observed particle enrichment varied as a function of voltage and particle diameter. These results suggest that an imposed electric field can be used to increase aerosol concentration in a continuous flow. This approach shows promise in increasing the effective enriched size range of virtual impactors or other continuous-flow methods of collection.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3