Method to retrieve cloud condensation nuclei number concentrations using lidar measurements
-
Published:2019-07-12
Issue:7
Volume:12
Page:3825-3839
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Tan WangshuORCID, Zhao GangORCID, Yu YingliORCID, Li ChengcaiORCID, Li Jian, Kang Ling, Zhu TongORCID, Zhao Chunsheng
Abstract
Abstract. Determination of cloud condensation nuclei (CCN) number
concentrations at cloud base is important to constrain aerosol–cloud
interactions. A new method to retrieve CCN number concentrations using
backscatter and extinction profiles from multiwavelength Raman lidars is
proposed. The method implements hygroscopic enhancements of backscatter and
extinction with relative humidity to derive dry backscatter and extinction
and humidogram parameters. Humidogram parameters, Ångström
exponents, and lidar extinction-to-backscatter ratios are then linked to the
ratio of CCN number concentration to dry backscatter and extinction
coefficient (ARξ). This linkage is established based on
the datasets simulated by Mie theory and κ-Köhler theory with in-situ-measured particle size distributions and chemical compositions. CCN
number concentration can thus be calculated with ARξ and
dry backscatter and extinction. An independent theoretical simulated dataset
is used to validate this new method and results show that the retrieved CCN
number concentrations at supersaturations of 0.07 %, 0.10 %, and
0.20 % are in good agreement with theoretical calculated values.
Sensitivity tests indicate that retrieval error in CCN arises mostly from
uncertainties in extinction coefficients and RH profiles. The proposed
method improves CCN retrieval from lidar measurements and has great
potential in deriving scarce long-term CCN data at cloud base, which benefits
aerosol–cloud interaction studies.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference54 articles.
1. Bedoya-Velásquez, A. E., Navas-Guzmán, F., Granados-Muñoz, M. J., Titos, G., Román, R., Casquero-Vera, J. A., Ortiz-Amezcua, P., Benavent-Oltra, J. A., de Arruda Moreira, G., Montilla-Rosero, E., Hoyos, C. D., Artiñano, B., Coz, E., Olmo-Reyes, F. J., Alados-Arboledas, L., and Guerrero-Rascado, J. L.: Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation, Atmos. Chem. Phys., 18, 7001–7017, https://doi.org/10.5194/acp-18-7001-2018, 2018. 2. Bian, Y., Zhao, C., Xu, W., Kuang, Y., Tao, J., Wei, W., Ma, N., Zhao, G.,
Lian, S., Tan, W., and Barnes, J. E.: A novel method to retrieve the
nocturnal boundary layer structure based on CCD laser aerosol detection
system measurements, Remote Sens. Environ., 211, 38–47,
https://doi.org/10.1016/j.rse.2018.04.007, 2018. 3. Bohren, C. F. and Huffman, D. R.: Absorption and Scattering by an Arbitrary
Particle, in: Absorption and Scattering of Light by Small Particles,
Wiley-VCH Verlag GmbH, Weinheim, 57–81, 2007. 4. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in:
Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,
M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,
P. M., Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 571–658, 2013. 5. Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/a:1010933404324, 2001.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|