Multi-decadal (1953–2017) rock glacier kinematics analysed by high-resolution topographic data in the upper Kaunertal, Austria

Author:

Fleischer Fabian,Haas Florian,Piermattei Livia,Pfeiffer Madlene,Heckmann TobiasORCID,Altmann MoritzORCID,Rom JakobORCID,Stark Manuel,Wimmer Michael H.,Pfeifer Norbert,Becht Michael

Abstract

Abstract. Permafrost is being degraded worldwide due to the change in external forcing caused by climate change. This has also been shown to affect the morphodynamics of active rock glaciers. We studied these changes, depending on the analysis, on nine or eight active rock glaciers, respectively, with different characteristics in multiple epochs between 1953 and 2017 in Kaunertal, Austria. A combination of historical aerial photographs and airborne laser scanning data and their derivatives were used to analyse surface movement and surface elevation change. In general, the studied landforms showed a significant acceleration of varying magnitude in the epoch 1997–2006 and a volume loss to variable degrees throughout the investigation period. Rock glaciers related to glacier forefields showed significantly higher rates of subsidence than talus-connected ones. Besides, we detected two rock glaciers with deviating behaviour and one that showed an inactivation of its terminal part. By analysing meteorological data (temperature, precipitation and snow cover onset and duration), we were able to identify possible links to these external forcing parameters. The catchment-wide survey further revealed that, despite the general trend, timing, magnitude and temporal peaks of morphodynamic changes indicate a slightly different sensitivity, response or response time of individual rock glaciers to fluctuations and changes in external forcing parameters.

Funder

Deutsche Forschungsgemeinschaft

Austrian Science Fund

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3