From mapped faults to fault-length earthquake magnitude (FLEM): a test on Italy with methodological implications

Author:

Trippetta Fabio,Petricca Patrizio,Billi AndreaORCID,Collettini Cristiano,Cuffaro Marco,Lombardi Anna Maria,Scrocca Davide,Ventura Giancarlo,Morgante Andrea,Doglioni CarloORCID

Abstract

Abstract. Empirical scaling relationships between fault or slip dimensions and earthquake magnitudes are often used to assess the maximum possible earthquake magnitude of a territory. Upon the assumption of the reactivability of any fault, the earthquake magnitudes derived from the surface fault length (FLEM) are compared at the national scale in Italy against catalogued magnitudes. FLEMs are obtained by considering a comprehensive fault dataset regardless of fault age, stress field orientation, strain rate, etc. In particular, (1) a comprehensive catalogue of all known faults is compiled by merging the most complete databases available; (2) FLEM is then derived from fault length; and (3) the resulting FLEMs are compared (i.e. the mathematical difference) with catalogued earthquake magnitudes. Results show that the largest FLEMs as well as the largest differences between FLEMs and catalogued magnitudes are observed for poorly constrained faults, mainly inferred from subsurface data. It is suggested that these areas have to be further characterized to better estimate fault dimension and segmentation and hence properly assess the FLEM. Where, in contrast, the knowledge of faults is geologically well constrained, the calculated FLEM is often consistent with the catalogued seismicity, with the 2σ value of the distribution of differences being 1.47 and reducing to 0.53 when considering only the Mw≥6.5 earthquakes. Our work highlights areas, in Italy, where further detailed studies on faults are required.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Reference163 articles.

1. Amato, A.: Crustal and deep seismicity in Italy: a Review, Special volume of the Italian Geological Society for the IGC, 32, 201–208, 2004. a

2. Amato, A. and Mele, F.: Performance of the INGV National Seismic Network from 1997 to 2007, Ann. Geophys., 51, 417–431, https://doi.org/10.4401/ag-4454, 2008. a

3. Amato, A., Azzara, R., Basili, A., Chiarabba, C., Ciaccio, M., Cimini, G., Di Bona, M., Frepoli, A., Hunstad, I., Lucente, F., Margheriti, L., Mariucci, M., Montone, P., Nostro, C., and Selvaggi, G.: Geodynamic evolution of the Northern Apennines from recent seismological studies, Mem. Soc. Geol. It, 52, 337–343, 1998. a

4. Anderlini, L., Serpelloni, E., and Belardinelli, M. E.: Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy), Geophys. Res. Lett., 43, 4321–4329, https://doi.org/10.1002/2016GL068604, 2016. a

5. Augliera, P., Béthoux, N., Déverchère, J., and Eva, C.: The Ligurian Sea: new seismotectonic evidence, B. Geofis. Teor. Appl., 36, 363–380, 1994. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3