Constraining the strength of the terrestrial CO<sub>2</sub> fertilization effect in the Canadian Earth system model version 4.2 (CanESM4.2)

Author:

Arora Vivek K.,Scinocca John F.

Abstract

Abstract. Earth system models (ESMs) explicitly simulate the interactions between the physical climate system components and biogeochemical cycles. Physical and biogeochemical aspects of ESMs are routinely compared against their observation-based counterparts to assess model performance and to evaluate how this performance is affected by ongoing model development. Here, we assess the performance of version 4.2 of the Canadian Earth system model against four land carbon-cycle-focused, observation-based determinants of the global carbon cycle and the historical global carbon budget over the 1850–2005 period. Our objective is to constrain the strength of the terrestrial CO2 fertilization effect, which is known to be the most uncertain of all carbon-cycle feedbacks. The observation-based determinants include (1) globally averaged atmospheric CO2 concentration, (2) cumulative atmosphere–land CO2 flux, (3) atmosphere–land CO2 flux for the decades of 1960s, 1970s, 1980s, 1990s, and 2000s, and (4) the amplitude of the globally averaged annual CO2 cycle and its increase over the 1980 to 2005 period. The optimal simulation that satisfies constraints imposed by the first three determinants yields a net primary productivity (NPP) increase from  ∼  58 Pg C year−1 in 1850 to about  ∼  74 Pg C year−1 in 2005; an increase of  ∼  27 % over the 1850–2005 period. The simulated loss in the global soil carbon amount due to anthropogenic land use change (LUC) over the historical period is also broadly consistent with empirical estimates. Yet, it remains possible that these determinants of the global carbon cycle are insufficient to adequately constrain the historical carbon budget, and consequently the strength of terrestrial CO2 fertilization effect as it is represented in the model, given the large uncertainty associated with LUC emissions over the historical period.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3