Plant <i>n</i>-alkane production from litterfall altered the diversity and community structure of alkane degrading bacteria in litter layer in lowland subtropical rainforest in Taiwan

Author:

Huang Tung-Yi,Hsu Bing-Mu,Chao Wei-Chun,Fan Cheng-Wei

Abstract

Abstract. n-Alkane and alkane-degrading bacteria have long been used as crucial biological indicators of paleoecology, petroleum pollution, and oil and gas prospecting. However, the relationship between n-alkane and alkane-degrading bacteria in natural forests is still poorly understood. In this study, long-chain n-alkane (C14–C35) concentrations in litterfall, litter layer, and topsoil as well as the diversity and abundance of n-alkane-degrading bacterial communities in litter layers were investigated in three habitats across a lowland subtropical rainforest in southern Taiwan: ravine, windward, and leeward habitats in Nanjenshan. Our results demonstrate that the litterfall yield and productivity of long-chain n-alkane were highest in the ravine habitats. However, long-chain n-alkane concentrations in all habitats were decreased drastically to a similar low level from the litterfall to the bulk soil, suggesting a higher rate of long-chain n-alkane degradation in the ravine habitat. Operational taxonomic unit (OTU) analysis using next-generation sequencing data revealed that the relative abundances of microbial communities in the windward and leeward habitats were similar and different from that in the ravine habitat. Data mining of community amplicon sequencing using the NCBI database revealed that alkB-gene-associated bacteria (95 % DNA sequence similarity to alkB-containing bacteria) were most abundant in the ravine habitat. Empirical testing of litter layer samples using semi-quantitative polymerase chain reaction for determining alkB gene levels confirmed that the ravine habitat had higher alkB gene levels than the windward and leeward habitats. Heat map analysis revealed parallels in pattern color between the plant and microbial species compositions of the habitats, suggesting a causal relationship between the plant n-alkane production and microbial community diversity. This finding indicates that the diversity and relative abundance of microbial communities in the litter layer are affected by n-alkane plant composition in the litterfall.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference37 articles.

1. Afzal, M., Yousaf, S., Reichenauer, T. G., and Sessitsch, A.: Ecology of Alkane-Degrading Bacteria and Their Interaction with the Plant, Molecular Microbial Ecology of the Rhizosphere, 92, 975–989, https://doi.org/10.1002/9781118297674.ch92, 2013.

2. Beilen, J. B. V., Li, Z., Duetz, W. A., Smits, T. H. M., and Witholt, B.: Diversity of Alkane Hydroxylase Systems in the Environment, Oil Gas Sci. Technol., 58 427–440, 2003.

3. Chao, K.-J., Chao, W.-C., Chen, K.-M., and Hsieh, C.-F.: Vegetation Dynamics of a Lowland Rainforest at the Northern Border of the Paleotropics at Nanjenshan, Southern Taiwan, Taiwan Journal of Forest Science, 25, 29–40, 2010.

4. Chao, W.-C., Chao, K.-J., Song, G.-Z. M., and Hsieh, C.-F.: Species Composition and Structure of the Lowland Subtropical Rainforest at Lanjenchi, Southern Taiwan, Taiwania, 52, 253–269, 2007.

5. Chao, W.-C., Wu, S.-H., Fan, S.-W., Lin, H.-Y., Hsieh, C.-F., and Chao, K.-J.: Distribution Patterns of Tree Species in a Lowland Rainforest at Nanjen Lake, Southern Taiwan, Taiwania, 53, 124–133, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3