Greenland Ice Sheet influence on Last Interglacial climate: global sensitivity studies performed with an atmosphere–ocean general circulation model
Author:
Pfeiffer M., Lohmann G.ORCID
Abstract
Abstract. During the Last Interglacial (LIG, 130–115 kiloyear before present), the northern high latitudes experienced higher temperatures than those of the late Holocene with a notably lower Greenland Ice Sheet (GIS). However, the impact of a reduced GIS on the global climate has not yet been well constrained. In this study, we quantify the contribution of the GIS to LIG warmth by performing various sensitivity studies, employing the Community Earth System Models (COSMOS), with a focus on height and extent of the GIS. In order to asses the effects of insolation changes over time and for a comparison of LIG climate with the current interglacial, we perform transient simulations covering the whole LIG and Holocene. We analyze surface air temperature (SAT) and separate the contribution of different forcings to LIG warmth. The strong Northern Hemisphere warming is mainly caused by increased summer insolation. Reducing the height and extent of the GIS leads to a warming of several degrees Celcius in the northern and southern high latitudes during local winter. In order to evaluate the performance of our LIG simulations, we additionally compare the simulated SAT anomalies with marine and terrestrial proxy-based LIG temperature anomalies. Our model results are in good agreement with proxy records with respect to the pattern, but underestimate the reconstructed temperatures. We are able to reduce the mismatch between model and data by taking into account the potential seasonal bias of the proxy record and the uncertainties in the dating of the proxy records for the LIG thermal maximum. The seasonal bias and the uncertainty of the timing are estimated from our own transient model simulations. We note however that our LIG simulations are not able to reproduce the full magnitude of temperature changes indicated by the proxies, suggesting a potential misinterpretation of the proxy records or deficits of our model.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Reference107 articles.
1. Alley, R. B., Andrews, J. T., Brigham-Grette, J., Clarke, G. K. C., Cuffey, K. M., Fitzpatrick, J. J., Funder, S., Marshall, S. J., Miller, G. H., Mitrovica, J. X., Muhs, D. R., Otto-Bliesner, B. L., Polyak, L., and White, J. W. C.: History of the Greenland Ice Sheet: paleoclimatic insights, Quaternary Sci. Rev., 29, 1728–1756, https://doi.org/16/S0277-3791(99)00062-1, 2010. 2. Bakker, P. and Renssen, H.: Last Interglacial model–data mismatch of thermal maximum temperatures partially explained, Clim. Past, 9, 1633–1644, https://doi.org/10.5194/cpd-10-739-2014, 2014. 3. Bakker, P., Van Meerbeeck, C. J., and Renssen, H.: Sensitivity of the North Atlantic climate to Greenland Ice Sheet melting during the Last Interglacial, Clim. Past, 8, 995–1009, https://doi.org/10.5194/cp-8-995-2012, 2012. 4. Bakker, P., Stone, E. J., Charbit, S., Gröger, M., Krebs-Kanzow, U., Ritz, S. P., Varma, V., Khon, V., Lunt, D. J., Mikolajewicz, U., Prange, M., Renssen, H., Schneider, B., and Schulz, M.: Last interglacial temperature evolution – a model inter-comparison, Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, 2013. 5. Bakker, P., Masson-Delmotte, V., Martrat, B., Charbit, S., Renssen, H., Gröger, M., Krebs-Kanzow, U., Lohman, G., Lunt, D. J., Pfeiffer, M., Phipps, S. J., Prange, M., Ritz, S. P., Schulz, M., Stenni, B., Stone, E. J., and Varma, V.: Temperature trends during the Present and Last Interglacial periods – a multi-model–data comparison, Quaternary Sci. Rev., 99, 224–243, https://doi.org/10.1016/j.quascirev.2014.06.031, 2014.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|