Aqueous-phase ozonolysis of methacrolein and methyl vinyl ketone: a potentially important source of atmospheric aqueous oxidants

Author:

Chen Z. M.,Wang H. L.,Zhu L. H.,Wang C. X.,Jie C. Y.,Hua W.

Abstract

Abstract. Recent studies indicate that isoprene and its gas-phase oxidation products could contribute a considerable amount of aerosol through aqueous-phase acid-catalyzed oxidation with hydrogen peroxide (H2O2), although the source of H2O2 is unclear. The present study revealed a potentially important route to the formation of aqueous oxidants, including H2O2, from the aqueous-phase ozonolysis of methacrolein (MAC) and methyl vinyl ketone (MVK). Laboratory simulation was used to perform the atmospheric aqueous-phase ozonolysis at different pHs and temperatures. Unexpectedly high molar yields of the products, including hydroxylmethyl hydroperoxide (HMHP), formaldehyde (HCHO) and methylglyoxal (MG), of both of these reaction systems have been seen. Moreover, these yields are almost independent of pH and temperature and are as follows: (i) for MAC–O3, 70.3±6.3% HMHP, 32.3±5.8% HCHO and 98.6±5.4% MG; and (ii) for MVK–O3, 68.9±9.7% HMHP, 13.3±5.8% HCHO and 75.4±7.9% MG. A yield of 24.2±3.6% pyruvic acid has been detected for MVK–O3. HMHP is unstable in the aqueous phase and can transform into H2O2 and HCHO with a yield of 100%. We suggest that the aqueous-phase ozonolysis of MAC and MVK can contribute a considerable amount of oxidants in a direct and indirect mode to the aqueous phase and that these compounds might be the main source of aqueous-phase oxidants. The formation of oxidants in the aqueous-phase ozonolysis of MAC and MVK can lead to substantial aerosol formation from the aqueous-phase acid-catalyzed reaction of H2O2 with MAC, even if there are no other sources of oxidants.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3